Causal Inference & Machine Learning: Why now?
December 13th, 2021
WHY-21 @ NeurIPS
Accepted Papers
-
A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources
Xiaoqing Tan, Chung-Chou Ho Chang, Lu Tang -
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe, David Madras, Richard Zemel, Max Welling -
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy, Aditya Grover, Stefano Ermon -
Building Object-based Causal Programs for Human-like Generalization
Bonan Zhao, Chris Lucas, Neil Bramley -
Causal Expectation-Maximisation
Marco Zaffalon, Alessandro Antonucci*, Rafael Cabañas -
Causal Inference Using Tractable Circuits
Adnan Darwiche -
Conditional average treatment effect estimation with treatment offset models
Wouter AC van Amsterdam, Rajesh Ranganath -
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang, Michael Jordan -
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, Andreas Krause -
Disentangling Causal Effects from Sets of Interventions in the Presence of Unobserved Confounders
Olivier Jeunen, Ciaran M Gilligan-Lee, Rishabh Mehrotra, Mounia Lalmas -
Encoding Causal Macrovariables
Benedikt Höltgen -
Identification of Latent Graphs: A Quantum Entropic Approach
Mohammad Ali Javidian, Vaneet Aggarwal, Zubin Jacob -
Learning Neural Causal Models with Active Interventions
Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab, Bernhard Schölkopf, Michael C Mozer, Yoshua Bengio, Stefan Bauer, Nan Rosemary K -
Learning preventative and generative causal structures from point events in continuous time
Tianwei Gong, Neil Bramley -
MANM-CS: Data Generation for Benchmarking Causal Structure Learning from Mixed Discrete-Continuous and Nonlinear Data
Johannes Huegle, Christopher Hagedorn, Lukas Böhme, Mats Pörschke, Jonas Umland, Rainer Schlosser -
Multiple Environments Can Reduce Indeterminacy in VAEs
Quanhan Xi, Benjamin Bloem-Reddy -
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo, Amir H Karimi, Bernhard Schölkopf -
Prequential MDL for Causal Structure Learning with Neural Networks
Jorg Bornschein, Silvia Chiappa, Alan Malek, Nan Rosemary Ke -
Reliable causal discovery based on mutual information supremum principle for finite datasets
Vincent Cabeli, Honghao Li, Marcel da Câmara Ribeiro-Dantas, Franck Simon, Herve Isambert -
Scalable Causal Domain Adaptation
Mohammad Ali Javidian, Om Pandey, Pooyan Jamshidi -
Synthesis of Causal Reactive Programs with Structured Latent State
Ria Das, Joshua Tenenbaum, Armando Solar-Lezama, Zenna Tavares -
Typing assumptions improve identification in causal discovery
Philippe Brouillard, Perouz Taslakian, Alexandre Lacoste, Sebastien Lachapelle, Alexandre Drouin -
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q Tran, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma -
Using Embeddings to Estimate Peer Influence on Social Networks
Irina Cristali, Victor Veitch -
Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson, Peter Manshausen, Alyson Douglas, Duncan Watson-Parris, Yarin Gal, Philip Stier