Causal Inference & Machine Learning: Why now?
December 13th, 2021
WHY-21 @ NeurIPS
Accepted Papers
- 
                
                  A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources
                  
                    
                  
                
                
 Xiaoqing Tan, Chung-Chou Ho Chang, Lu Tang
- 
                
                  Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
                  
                    
                  
                
                
 Sindy Löwe, David Madras, Richard Zemel, Max Welling
- 
                
                  BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
                  
                    
                  
                  
                    
                  
                
                
 Chris Cundy, Aditya Grover, Stefano Ermon
- 
                
                  Building Object-based Causal Programs for Human-like Generalization
                  
                    
                  
                  
                    
                  
                
                
 Bonan Zhao, Chris Lucas, Neil Bramley
- 
                
                  Causal Expectation-Maximisation
                  
                    
                  
                
                
 Marco Zaffalon, Alessandro Antonucci*, Rafael Cabañas
- 
                
                  Causal Inference Using Tractable Circuits
                  
                    
                  
                
                
 Adnan Darwiche
- 
                
                  Conditional average treatment effect estimation with treatment offset models
                  
                    
                  
                
                
 Wouter AC van Amsterdam, Rajesh Ranganath
- 
                
                  Desiderata for Representation Learning: A Causal Perspective
                  
                    
                  
                
                
 Yixin Wang, Michael Jordan
- 
                
                  DiBS: Differentiable Bayesian Structure Learning
                  
                    
                  
                
                
 Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, Andreas Krause
- 
                
                  Disentangling Causal Effects from Sets of Interventions in the Presence of Unobserved Confounders
                  
                    
                  
                
                
 Olivier Jeunen, Ciaran M Gilligan-Lee, Rishabh Mehrotra, Mounia Lalmas
- 
                
                  Encoding Causal Macrovariables
                  
                    
                  
                
                
 Benedikt Höltgen
- 
                
                  Identification of Latent Graphs: A Quantum Entropic Approach
                  
                    
                  
                
                
 Mohammad Ali Javidian, Vaneet Aggarwal, Zubin Jacob
- 
                
                  Learning Neural Causal Models with Active Interventions
                  
                    
                  
                
                
 Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab, Bernhard Schölkopf, Michael C Mozer, Yoshua Bengio, Stefan Bauer, Nan Rosemary K
- 
                
                  Learning preventative and generative causal structures from point events in continuous time
		   
                    
                  
                  
                    
                  
                
                
                
 Tianwei Gong, Neil Bramley
- 
                
                  MANM-CS: Data Generation for Benchmarking Causal Structure Learning from Mixed Discrete-Continuous and Nonlinear Data
                  
                    
                  
                
                
 Johannes Huegle, Christopher Hagedorn, Lukas Böhme, Mats Pörschke, Jonas Umland, Rainer Schlosser
- 
                
                  Multiple Environments Can Reduce Indeterminacy in VAEs
                  
                    
                  
                
                
 Quanhan Xi, Benjamin Bloem-Reddy
- 
                
                 On the Adversarial Robustness of Causal Algorithmic Recourse
                   
                    
                  
                  
                    
                  
               
                
 Ricardo Dominguez-Olmedo, Amir H Karimi, Bernhard Schölkopf
- 
                
                  Prequential MDL for Causal Structure Learning with Neural Networks
                  
                    
                  
                  
                    
                  
                
                
 Jorg Bornschein, Silvia Chiappa, Alan Malek, Nan Rosemary Ke
- 
                
                 Reliable causal discovery based on mutual information supremum principle for finite datasets
                  
                    
                  
                
                
 Vincent Cabeli, Honghao Li, Marcel da Câmara Ribeiro-Dantas, Franck Simon, Herve Isambert
- 
                
                 Scalable Causal Domain Adaptation
                  
                    
                  
                
                
 Mohammad Ali Javidian, Om Pandey, Pooyan Jamshidi
- 
                
                 Synthesis of Causal Reactive Programs with Structured Latent State
                  
                    
                  
                
                
 Ria Das, Joshua Tenenbaum, Armando Solar-Lezama, Zenna Tavares
- 
                
                 Typing assumptions improve identification in causal discovery
                  
                    
                  
                
                
 Philippe Brouillard, Perouz Taslakian, Alexandre Lacoste, Sebastien Lachapelle, Alexandre Drouin
- 
                
                 	Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
                  
                    
                  
                
                
 Thien Q Tran, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma
- 
                
                 Using Embeddings to Estimate Peer Influence on Social Networks
                  
                    
                  
                
                
 Irina Cristali, Victor Veitch
- 
                
                 Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific
                  
                    
                  
                
                
 Andrew Jesson, Peter Manshausen, Alyson Douglas, Duncan Watson-Parris, Yarin Gal, Philip Stier