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Abstract

Learning the structure of Bayesian networks and causal relationships from obser-
vations is a common goal in several areas of science and technology. We show
that the prequential minimum description length principle (MDL) can be used
to derive a practical scoring function for Bayesian networks when flexible and
overparametrized neural networks are used to model the conditional probability dis-
tributions between observed variables. MDL represents an embodiment of Occam’s
Razor and we obtain plausible and parsimonious graph structures without relying
on sparsity inducing priors or other regularizers which must be tuned. Empirically
we demonstrate competitive results on synthetic and real-world data. The score
often recovers the correct structure even in the presence of strongly nonlinear rela-
tionships between variables; a scenario were prior approaches struggle and usually
fail. Furthermore we discuss how the the prequential score relates to recent work
that infers causal structure from the speed of adaptation when the observations
come from a source undergoing distributional shift.

1 Introduction

Bayesian networks are a powerful probabilistic framework based on a graphical representation
of statistical relationships between random variables. Inferring the Bayesian network structure
that best represents a dataset not only allows to use the network to perform probabilistic, and
possibly causal, reasoning but can also provide substantial illumination about the domain under
consideration. This paper considers the problem of structure learning in settings in which modern,
possibly overparametrized, neural networks are used to model the Bayesian network conditional
distributions.

Recent effort on structure learning with modern neural networks has focused on improving scalability
w.r.t. the number of variables by relaxing the discrete search problem over structures to a continuous
optimization problem [Zheng et al., 2018, Yu et al., 2019, Zheng et al., 2020]. Whilst enabling the
use of large structures, the regularized maximum-likelihood score used to rank structures makes these
methods prone to overfitting random fluctuations and sensitive to the regularizer.

We propose an approach to ranking structures based on the minimum description length (MDL)
principle. Motivated by fundamental ideas in data-compression, information theory, as well as
philosophical notions like Occam’s razor, the MDL principle posits that models which lead to
compact and parsimonious descriptions of the data are more plausible. In the context of structure
learning, this criterion induces a preference for more compact and simpler structures as more plausible
explanations of the data generation mechanism. Many traditional scores, such as AIC [Akaike, 1973],
BIC [Schwarz, 1978], marginal likelihood [Heckerman et al., 1995], and more recent scores [Silander
et al., 2018], can be seen as implementations of the MDL principle. However, some of these scores
are approximations that, especially when applied to overparametrized neural networks, can lead
to poor empirical performance [Silander et al., 2008]. In addition, many such scores can only be
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applied to simple model families, and therefore might not be suitable to modelling complex nonlinear
relationships in the data.

We propose using the prequential plug-in score, which evaluates conditional distributions by their
sequential predictive performance, and gives an approach to ranking structures that balances fit to
the data with overfitting without the need for an explicit sparsity inducing priors or regularizer. We
provide a specific method for implementing the score with modern neural networks. We demonstrate
on both artificial and real-world data that our method often retrieves the data-generating structure and
is robust to neural network hyperparameter selection.

2 Structure Learning with Prequential MDL

Our approach to learning the structure of a Bayesian network is to rank structures by measuring
the complexity of the associated conditional probability distributions (CPDs) through the minimum
description length (MDL) principle [Grünwald, 2004, Grünwald, 2007]. In particular, we propose the
use of the prequential plug-in score and an implementation of this score for the case in which modern
neural networks are used to model the CPDs. Before describing our method in detail, we give an
introduction into Bayesian networks and structure learning with MDL.

(G, p)
X1

p(X1)

X2

p(X2|X1, X3)

X3

p(X3)

Bayesian Networks (BNs). A Bayesian network [Pearl, 1988,
2000, Cowell et al., 2007, Koller and Friedman, 2009] is a directed
acyclic graph (DAG) G whose nodes X1, . . . , XD represent random
variables and links express statistical dependencies among them. Each
node Xd is associated with CPD p(Xd | pa(Xd)), where pa(Xd) denote the parents of Xd, namely
the nodes with a link into Xd. The joint distribution of all nodes is given by the product of all
CPDs, i.e. p(X1, . . . , XD | G) =

∏D
d=1 p(X

d | pa(Xd)). We make the common assumption that
each CPD p(Xd | pa(Xd)) is parametrized by a separate set of parameters θd. The set of BNs that
encode the same set of conditional independence assumptions forms a Markov equivalence class. A
BN can be given a causal semantic by interpreting a link between two nodes as expressing causal
rather than statistical dependence.

Score-based Structure Learning with MDL. Let p∗ be a joint distribution over D random vari-
ables with joint domain X , and let D = {xi := (x1

i , . . . x
D
i )}ni=1 be a dataset of n i.i.d. samples

from p∗. The goal of structure learning is to infer the DAG G, referred to as structure, or the Markov
equivalence class that best represents D.

We focus on score-based approaches that rank structures w.r.t. some scoring metric [Heckerman,
1999, Drton and Maathuis, 2017, Glymour et al., 2019]. A naïve score is the maximum log-likelihood
maxθ∈Θ log p(D | θ,G), which ignores model complexity and results in a preference for dense and
complex structures that do not generalize well. A simple approach to account for model complexity is
to add to the log-likelihood a regularization term that can depend on the dimension of the parameters
dim(θ) and on the size of the dataset n—the two most common penalty terms are−dim(θ) (AIC) and
−0.5 log(n) dim(θ) (BIC). A more sophisticated approach is to instead integrate out θ, which gives
the log-marginal likelihood log

∫
Θ
p(D | θ,G)p(θ | G)dθ. Both these approaches can be described

within the unifying framework of MDL.

The MDL framework is based on the principle that the model that yields the shortest description of
the data is also the most plausible. In the context of structure learning, the MDL principle prescribes
that we pick the model classMG = {p(·|θ,G) : θ ∈ Θ} from the set {MG : G ∈ G} which leads
to the most compact representation of the dataset D with a code derived fromMG . Considering
the one-to-one relationship between code-lengths and probability distributions this means selecting
the model class under which the data has the highest likelihood. From this perspective maximum
log-likelihood log p(D|θ̂MLE(D),G), where θ̂MLE(D) := arg maxθ log p(D|θ,G) alone cannot be
the basis for a code because it does not normalize to one, it is thus not a distribution over D which
precludes the existence of a code with the corresponding code-length. Maximum log-likelihood can
only be used as a basis for a code if θ̂MLE is known a-priori.

Instead, the MDL literature suggests using the universal distribution p(·|G) ofMG . It is defined to
be the distribution that as closely as possible tracks the code-length of the maximum log-likelihood
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solution withinMG on all possible data Z ∈ Xn:

p(· | G) := arg min
q

max
Z∈Xn

(
− log q(Z)−

(
− log p(Z | θ̂MLE(Z),G)

))
. (1)

The MDL structure selection rule is
GMDL(D) := arg max

G∈G
log p(D |G) (2)

because the model class with the most compact representation corresponds to the model class
with highest p(D|G) (see Grünwald and Roos [2019]). The universal distribution is a probability
distribution that, in some sense, summarizes how wellMG fits data: it places large probability on D
only if there is a distribution p(·|θ,G) ∈ MG that places large probability on D. The requirement
that p(·|G) must normalize to one naturally induces complexity regularization. For a model class that
is very expressive (e.g. G is fully connected) log p(Z|θ̂MLE(Z),G) is large for many values of Z ,
and therefore the universal distribution must spread its mass across much of Xn. This implies that
log p(D|G) for the observed dataset D cannot be high. On the other hand, for a model class that is
not as expressive (e.g, G includes only few links), log p(Z|θ̂MLE(Z),G) is large only for data that are
compatible with its graph structure and the universal distribution can have much higher log-likelihood
on such data. Using the universal distribution for structure selection leads to favoring structures that
have expressiveness for data similar to D but do not waste expressiveness on dissimilar data.

2.1 Prequential Plug-in Score

Equation 1 provides a prescriptive definition of the universal distribution required by Eq. (2) to
compute the score log p(D |G). Several constructive definitions have been proposed to closely ap-
proximate Eq. (1). These are, following the MDL literature, also referred to as universal distributions.
We propose approximating log p(D |G) with the prequential plug-in score from the prequential
plug-in universal distribution, defined as

log ppreq(D |G) := log

n∏
i=1

p(xi | θ̂(x<i),G),

where θ̂(x<i) ∈ Θ indicates a consistent parameters estimate given x<i := (x1, . . . , xi−1).

The prequential plug-in score is based on the idea of evaluating a model by its sequential predictive
performance and therefore by its generalization capabilities [Dawid and Vovk, 1999]. The prequential
approach in the context of MDL has been proposed by Grünwald [2004], Poland and Hutter [2005],
Grünwald [2007]. There are advantages in using the prequential plug-in score w.r.t. other scores
derived from popular and well-studied universal distributions, such as the log-marginal likelihood
(also called Bayesian score) log pBayes(D |G) := log

∫
Θ
p(D | θ,G)p(θ | G)dθ, the log-normalized

maximum likelihood log pNML(D |G) := log p(D | θ̂MLE(D),G)− log
∫
Z∈Xn p(Z | θ̂MLE(Z),G)dZ

[Rissanen, 1996], or other approximations. The prequential plug-in score is better suited to neural
networks than the Bayesian score, as it does not require integration over the parameters. Whilst
it might appear that these two scores imply different preferences for model selection, they are
equivalent for several, and often natural, choices of p(θ) and θ̂(x<i) (see Sect. 3.1). The log-
normalized maximum likelihood is widely used in theoretical treatments of MDL. However, the
normalization term over all possible observed data makes this score often intractable or not defined.
The well-known AIC/BIC scores can also be cast as approximations to log p(D|G) [Lam and Bacchus,
1994], but both are known to have poor empirical performance [Silander et al., 2008] as they can be
quite loose.

Decomposability over CPDs. The assumption that each CPD is modelled by a separate set of
parameters enables us to write the prequential plug-in score as

log ppreq(D |G) =

D∑
d=1

n∑
i=1

log p(xdi | pa(xdi ), θ̂
d(x<i)), (3)

where pa(xdi ) indicates the observed values of pa(Xd) for observation xi and θ̂d(x<i) the parameters
learned using {(xdj , pa(xdj ))}

i−1
j=1. This decomposition allows a computationally more efficient

ranking of structures—for example there are 29,280 DAGs with 5 nodes but only 80 underlying
CPDs.
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Figure 1: Prequential scoring with tabular CPDs on synthetic data generated using G∗ = A→ B →
C. (a): Next-step log-loss for variable A given all possible combinations of the other variables as
parents. (b): Excess prequential log-loss for all possible DAGs relative to G∗. Uncertainty bands
show standard deviation over 1,000 permutations of the data.

2.2 Implementation of the Prequential Plug-In Score with Neural Networks

The computation of the prequential plug-in score (3) requires evaluating log p(xdi |pa(xdi ), θ̂
d(x<i))

∀i = 1, . . . , n. When the CPDs are modelled by neural networks, we must train the networks to
convergence on many subsets of x<i using a stochastic gradient-based optimizer. Modern, usually
overparametrized, neural networks 1) may overfit severely for small i, and 2) training them from
scratch for each i can be computationally infeasible, while at the same time it is difficult to use them
in online settings where the training set constantly grows (a topic of active research). For example,
using the model parameters from training on x<i as a starting point for learning model parameters
from x<i+j often leads to significantly reduced generalization [Ash and Adams, 2020].

To overcome the second obstacle, we propose to use the approach described by Blier and Ol-
livier [2018], Bornschein et al. [2020], specifically to choose a set of increasing split points
{sk}Kk=1, with sk ∈ [2, . . . , n], sK=n+1 and compute the score of the data between two split
points xdsk , . . . , x

d
sk+1−1 with a neural network trained from scratch on x<sk to convergence, which

corresponds to the approximation

n∑
i=1

log p(xdi |pa(xdi ), θ̂(x<i)) ≈
K−1∑
k=1

sk+1−1∑
j=sk

log p(xdj |pa(xdj ), θ̂
d(x<sk)).

In the experiments, we chose the split points to be exponentially spaced and performed K−1
independent training and evaluation runs, usually in parallel.

To overcome the first obstacle, we propose to use a simple confidence calibration approach introduced
by Guo et al. [2017] to independently calibrate every CPD on every training run. First, consider a
network with a softmax output layer for categorical prediction. Conceptually, we could perform post-
calibration by first training the network to convergence and then, with all parameters frozen, replacing
the output layer softmax(h) with the calibrated output layer softmax(β · h), where β is a scalar
parameter chosen to minimize the loss on validation data. In practice, we optimize β by gradient
descent in parallel with the other model parameters. We alternate computing ten gradient steps for
θ, calculated from the training set and using the uncalibrated network (with final layer softmax(h)),
with a single gradient step on β, calculated from the validation set using the calibrated network (with
final layer softmax(β · h)). This simple calibration procedure has proven to be surprisingly effective
at avoiding overfitting when training large neural networks on small datasets [Bornschein et al., 2020].
To the best of our knowledge, an analogous method to calibrate continuous-valued neural network
outputs does not exist. Thus, we approximate networks for a continuous random variable by networks
for a categorical random variable on the quantized values.

3 Experiments

We demonstrate the effectiveness of our approach, which we refer to as prequential scoring, on a
variety of synthetic datasets and on a real-world dataset.
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3.1 Prequential Scoring with Tabular CPDs

Whilst our motivation for introducing the prequential plug-in score is its suitability when neural
networks are used to model the CPDs, we first build intuition by considering the case of categorical
data with conditional probability tables, i.e. with p(Xd = k | pa(Xd) = l, θd) = θdk,l, which does
not require approximating the score.

We generated synthetic data D = {xi}ni=1 by using the DAG G∗ = A→B→C with each variable
taking five possible values, and by drawing the parameters for each ground-truth CPD and value
of parents from a Dirichlet distribution with α∗ = 1. We then computed the next-step log-loss
− log p(xdi | pa(xdi ), θ̂

d(x<i)), ∀i = 1, . . . , n and ∀d = 1, . . . , D for all possible parents sets pa(xdi ),
using the α = 0.5-regularized MLE estimator θ̂dk,l(x<i) = Nd

k,l + α/
∑

m(Nd
m,l + α), where Nd

k,l

denotes the number of times that, in x<i, Xd and pa(Xd) take values k and l respectively.

Fig. 1(a) displays the next-step log-loss ∀i = 1, . . . , n for variable A given all possible parents sets,
averaged over 1, 000 different permutations of the datapoints to make the plot less noisy. This average
can be seen as an approximation to the generalization log-loss −Ex̃∼p∗ log p(x̃d | pa(x̃d), θ̂d(x<i))
(i.e. the negative log-likelihood on held-out data). The plot shows that conditioning A on B generally
gives the best result. Additionally conditioning on C reaches the same performance when sufficient
training data is available, but results in worse performance in the small-data regime. In other words,
if we were to train on e.g. 1, 000 datapoints and use the generalization log-loss to select a model,
we would not be able to reliably select p(A |B) over p(A |B,C). The generalization log-loss does
not account for model complexity and might lead us to select models that are more complex than
necessary. However, with only 100 training examples this loss does give a clear signal that we should
prefer p(A |B), because the over conditioned p(A |B,C) has significantly worse performance in the
small-data regime. These observations suggest that we should select models in the small-data regime,
but finding the right regime could be difficult. Fig. 1(a) indicates that the regime is between ≈ 50
and ≈ 200 for p(A|·), but that is not known a-priori. Additionally, the optimal regime to perform
model selection for e.g. p(B|·) might be different. By summing the next-step log-losses up to i, the
prequential log-loss− log ppreq(x≤i | G) accumulates and persists the differences from the small-data
regimes. Fig. 1(b) shows the prequential log-loss ∀i = 1, . . . , n for all DAGs relative to the best one.
The ground-truth DAG A→B→C is identified as most plausible, followed by A←B→C and
A←B←C; all three are in the same Markov equivalence class. The fully connected DAGs, which
reach about same next-step log-loss after being trained on ≈1, 000 datapoints, accumulate more than
50 nats additional loss compared to A→B→C. Notice that with our choice for the parameters
estimator the prequential log-loss becomes equivalent to the log-marginal likelihood with θ1, . . . , θD

independent random variables with Dirichlet distributions (see Appendix F).

3.2 Prequential Scoring with Neural Networks

We evaluate prequential scoring with neural networks on several synthetic datasets and on the Sachs
real-world dataset [Sachs et al., 2005]. We primarily compare with the DAG-GNN method introduced
by Yu et al. [2019], which represents one of the more competitive modern methods to structure
learning with neural networks. Additionally we compare with the PC algorithm, a constraint-based
method using linear-regression based Pearson correlation as independence test [Spirtes et al., 2000]1.

Architecture and Hyperparameters. In all experiments, we modelled the CPDs with neural
networks consisting of 3 fully connected layers of 512 hidden units, ReLU activation functions, and
dropout with probability of 0.5 on all the hidden units. We applied a random Fourier transformation
to the data obtained by sampling 512 random frequencies from a Gaussian distribution N (0, 102), as
this has been shown to improve the performance in neural networks with low-dimensional inputs
[Tancik et al., 2020]. To use the softmax confidence calibration described in Sect. 2.2, we mapped the
predicted values into the interval [−1, 1] with tanh and then discretized them according to a uniform
128-values grid. For optimization, we used Adam [Kingma and Ba, 2015] with a batch size of 128;
for each point sk, we independently choose the learning rate to be either 1·10−4 or 3·10−4 depending
on which one resulted in a lower calibrated log-loss. We performed 25,000 gradient steps but used
early-stopping if the calibrated log-loss increased, which led to considerable compute savings as many

1Constraint-based approaches use independence tests to infer the existence of links between pairs of variables
and require faithfulness—see Appendix B for a discussion on this assumption.
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Figure 2: Prequential scoring with neural networks on synthetic data generated from G∗ = A →
B → C. (a): Next-step log-loss for variable C given all possible combinations of the other variables
as parents. (b): Excess prequential log-loss for all possible DAGs relative to G∗. Uncertainty bands
show standard deviation over 5 random seeds.
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Figure 3: Prequential scoring with neural networks on synthetic data generated from G∗ = A →
C ← B,C → D,C → E. Excess prequential log-loss for the 14 most likely DAGs relative to the
the most likely one. Uncertainty bands show standard deviation over 3 random seeds for neural
network initialization and mini-batching.

training runs on small subsets of the data converge after only a few hundred or thousand gradient
steps. All experiments were carried out on CPUs without accelerators as the networks were relatively
small, and a typical run to convergence took between 5 and 15 minutes. We performed such training
runs for each potential CPD and for K ≈ 6 log-equidistantly spaced split-points sk. For example,
with 5 observed variables we ran 960 independent training runs corresponding to all combinations
of the 80 CPDs, 6 split-points, and 2 learning-rates. We collected and accumulated the results and
performed an exhaustive search over all DAGs to find the most likely one given the data. Changing
the depth and width of the networks did not impact the rankings of the structures, provided that
the models had sufficient capacity. Similarly, changing the optimizer to RMSprop [Graves, 2014]
or Momentum SGD [Qian, 1999] had minimal effect. This robustness, together with the fact that
prequential scoring has no hyperparameter for regulating the sparsity of the inferred graphs, allowed
us to use the same hyperparameter settings throughout all the experiments.

Case Studies for 3 and 5-Node DAGs. We first evaluated prequential scoring on data generated
from hand-crafted generation mechanisms. Below, we describe the results from two mechanisms
(a third mechanism is reported in Appendix C). Fig. 2 show the results obtained on data generated
from the DAG G∗ = A → B → C with A ∼ N (0, 1), B = sin(A + εB), C = sin(B + εC), and
εB , εC ∼ N (0, 0.12). We observe the same scaling behaviour of Sect. 3.1 for both the next-step
log-loss and the prequential log-loss, and the retrieval of G∗ with an almost 500 nat margin. Fig.
3 shows the results obtained on data generated from G∗ = A → C ← B,C → D,C → E with
A ∼ N (0, 1), B ∼ N (0, 1), C = sin(2AB + εC), D = sin(C) + εD, E = sin(3C + εE), and
εC , εD, εE ∼ N (0, 0.12). As above, we observe that the next-step log-loss accumulated on small and
medium-sized subsets of the dataset (smaller than roughly 20,000) is crucial to getting a discerning
signal for DAG selection. Once again, prequential scoring identifies G∗ by a significant margin of
2,000 nats.

Data from Yu et al. [2019]. To test prequential scoring on a larger gamut of distributions, we
turned to the data generating mechanism introduced by Yu et al. [2019] for validating DAG-GNN.
Specifically, we generated datasets by the fixed pointsX of the equations a)X = A> cos(X+1)+Z
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E H Inferred DAG (DAG-GNN) Ground-Truth DAG Inferred DAG (ours) H E

7 2 0 3

7 4 0 3

3 0 0 3

7 5 1 7

3 0 0 3

3 0 1 3

3 0 1 3

7 2 1 3

3 0
;

3 7

3 0 0 3

Table 1: Results on nonlinearities from Yu et al. [2019]. We list the ground-truth DAGs and the DAGs
inferred by DAG-GNN and by prequential scoring. We also report whether the inferred DAGs are in
the Markov equivalence class E of the ground-truth DAGs and the structural Hamming distanceH.

and b) X = 2 sin(A>(X + 0.5 · 1)) +A>(X + 0.5 · 1) + Z, where 1 denotes the all-ones vector
and Z a standard normal variable. Due to the limited scalability of the exhaustive DAG search step
required in prequential scoring, we restricted ourselves to 5×5 adjacency matrices A. We generated
5 datasets using a) and 5 datasets using b).

The structures inferred by prequential scoring and DAG-GNN are given in Table 1. Prequential
scoring tends to recover DAGs with lower structural Hamming distanceH to the ground-truth DAG
(0.7 vs 1.3 on average) and that are more frequently in the same Markov equivalence class E (8 of 10
vs 6 of 10). The PC algorithm also performs reasonably well by inferring DAGs within the correct
Markov equivalence class in 5 cases (details are given in Appendix D). Inspection of the data revealed
that the vast majority of relationships between the observed variables can be well approximated with
simple linear functions; as such, it is not surprising that the PC algorithm performs well even though
it uses linear-regression based Pearson correlation as independence test.

Ground-Truth DAG Inferred DAG H E

0 3

1 3

1 3

1 7

2 3

2 7

1 3

3 7

2 3

6 7

Ground-Truth DAG Inferred DAG H E

1 3

5 7

0 3

1 3

4 7

2 3

3 7

0 3

2 3

2 7

Table 2: Results obtained with prequential scoring on 20 randomly generated five-node graphs, with
CPDs corresponding to compositions of polynomials and trigonometric functions (see Table 3 in
Appendix E). We list the ground-truth DAGs, the inferred DAGs, the structural Hamming distanceH,
and whether the inferred DAGs are in the Markov equivalence class E of the ground-truth DAGs.

Complex Nonlinearities from Polynomials and Trigonometric Functions. To investigate the
performance of prequential scoring for setting in which the CPDs need to model highly nonlinear
relationships, we created a potpourri of synthetic data by first sampling random 5-node DAGs using
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the GNP algorithm [Batagelj and Brandes, 2005] with link probability 0.25 and then annotating the
links with random compound functions of polynomials, trigonometric functions, reciprocals and
random noise. We created a set of 20 such data generation mechanisms which are listed in Table 3 of
Appendix E. For example, a typical generation mechanism is A = sin(30 εA), B = sin(2A) + εB ,
C = sin(B3−A+εC),D = (C+εD)3, E = sgn(A)(|A|+0.1)−1 +εE , with εA, εB , εC , εD, εE ∼
N (0, 0.12).

In Table 2 we list the ground-truth DAGs, the DAGs inferred by prequential scoring, the structural
Hamming distanceH, and whether the inferred DAGs are in the Markov equivalence class E of the
ground-truth DAGs. We observe that prequential scoring infers DAGs with an averageH of 1.9 and
recovers a member of E in 12 of the 20 cases.

We applied DAG-GNN and PC to the same 20 data datasets and were not able to obtain reliable
and reproducible results. For DAG-GNN with default hyperparameters, the inferred structure varied
significantly for different initial seeds and different sizes of the dataset. We also noticed a high
sensitivity to the sparsity regularization hyperparameter. For the constraint-based method the results
appear random. We did however not expect reliable results because the independence test is not
designed to work on strongly nonlinear data.

pip3

plcg

pip2
pkc

pka

raf

mek

erk

akt
p38

jnk

Protein Signaling Network. As real-world dataset we
considered the Sachs dataset for the discovery of a pro-
tein signaling network [Sachs et al., 2005], a benchmark
dataset for structure learning with experimental annota-
tions accepted by the biology research community. The
data contains continuous measurements of expression lev-
els of multiple phosphorylated proteins and phospholipid
components in human immune system cells, and the net-
work provides the ordering of the connections between
pathway components. Based on n = 7, 466 samples of
D = 11 cell types, Sachs et al. [2005] estimated 20 links
in the graph. In addition to observational samples, the
dataset contains interventional samples obtained by acti-
vating or inhibiting expression levels at particular nodes.
We handled interventional samples following the princi-
ples behind intervention in causal Bayesian networks [Pearl, 2000, Pearl et al., 2016]: if sample xdj
was marked as the result of an intervention, we did not consider it for the learning and evaluation of
the d-th CPD (see Appendix G for a description and a visualization of the effect that interventional
data can have on prequential scoring).

We computed the prequential plug-in score from three runs with different random seeds for neural
network initialization and mini-batching. For scalability reasons, we were only able to consider
CPDs with at most 4 parents, and we used a heuristic hill-climbing method [Heckerman et al., 1995]
to search the space of DAGs instead of an exhaustive search.

H # links
NOTEARS 22 16
DAG-GNN 19 18

prequential scoring 16 15
prequential scoring (PWA) 18.4 16.8

Above, we show the DAG G∗ that has been ac-
cepted by the biology research community as the
best known solution overlayed with the DAG in-
ferred by prequential scoring. Shared links are solid
in black; otherwise, links discovered by prequential
scoring are dotted blue and the DAG links only in
G∗ are dashed in red. The table on the left reports

the structural Hamming distanceH and the number of links found by prequential scoring, DAG-GNN
and NOTEARS [Zheng et al., 2018]. Prequential scoring performs favourably and finds a graph with
lower structural Hamming distanceH to the ground-truth compared to DAG-GNN and NOTEARS.

However, prequential scoring identified a number of DAGs with good prequential plug-in scores and
partially overlapping uncertainty bands. Using Bayes rule we can approximate the posterior p(G|D)
and compute the posterior weighted average (PWA) Hamming distance

∑
G p(G|D)H(G,G∗) and the

posterior weighted number of links. To approximate the posterior we considered all graphs G visited
by the hill climbing algorithm. The results are reported in the table. The posterior was dominated by
a few hundred graphs G with good scores.
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4 Discussion

This paper considered the problem of learning the structure of a Bayesian network in settings in
which modern, possibly overparametrized, neural networks might be used to model its conditional
distributions. We proposed the use of the prequential plug-in score as a MDL-based model selection
criterion that does not require any explicit sparsity regularization, and provided a specific implemen-
tation using neural networks that shows good performance, leads to sparse, parsimonious structural
inferences, and often recovers the structure underlying the data generation mechanism.

Previous literature on MDL-based approaches to structure learning has focused on analytically
tractable model families, such as tabular distributions or distributions with conjugate priors [Grünwald,
2007]. For categorical random variables, Silander et al. [2008] derived a factorized approximation to
the normalized maximum likelihood by exploiting the conditional distribution structure. This work
was further extended [Silander et al., 2018] to focus on model selection procedures that assign the
same score to every model in a Markov equivalence class. However, it is not clear how to generalize
these techniques to continuous random variables or complex models.

Outside the context of structure learning, MDL-inspired model selection for neural networks has
primarily focused on using variational approximations or approximations based on AIC or BIC
[Hinton and Van Camp, 1993, MacKay, 2003]. Lehtokangas et al. [1993] were perhaps the first
to use a prequential plug-in approach, though the structure learned was the capacity of the neural
network. Blier and Ollivier [2018] pioneered using the prequential plug-in distribution for modern
scale neural networks architectures and essentially argued that prequential coding leads to much
shorter description lengths than state-of-the-art variational approximations. They used the block-wise
estimates described in Sect. 2.2 but without the confidence calibration; as a result, they had to
switch between different model classes to avoid overfitting. They thus calculated prequential MDL
estimates for a particular switching pattern, not for a model class. Bornschein et al. [2020] extended
the block-wise estimate with calibration and obtained MDL estimates for modern overparametrized
neural networks without limiting their capacity.

Recent efforts on structure learning with modern neural networks has focused on improving scalability
by framing structure search as a continuous optimization problem with regularized maximum-
likelihood as a scoring metric (see Zheng et al. [2018], Yu et al. [2019], Zheng et al. [2020], Pamfil
et al. [2020], and Vowels et al. [2021] for a review). Scalability is an important aspect that we
did not consider. As a consequence, our experiments were only feasible with a small number of
variables. While this might seem like a step backwards compared to recent work, we believe that it is
important to investigate new scoring metrics without the confounding effect of approximating the
search procedure. Proposals for scaling prequential scoring to a higher number of variables include
classical approximation methods developed for Bayesian scores [Heckerman, 1999], techniques
like dynamic programming [Malone et al., 2011], branch and bound [de Campos and Ji, 2011],
mathematical programming [Jaakkola et al., 2010, Cussens, 2011], and continuous optimization
approaches [Zheng et al., 2018, Yu et al., 2019, Zheng et al., 2020, Pamfil et al., 2020].

Our approach effectively uses the generalization performance when trained on limited data as a
model selection criterion. As such it is related to recent work that uses adaptation speed, i.e. how
quickly models adapt to changes in the data generating process, to infer causal structures [Ke et al.,
2019, Bengio et al., 2020] (see Le Priol et al. [2020] for a theoretical justification of this principle).
The prequential MDL perspective offers an alternative and potentially simpler argument based on
sample-efficiency instead of gradient-step efficiency to justify such an approach. And, as we have
shown, this perspective is not only theoretically well-motivated but also applicable to i.i.d. data.
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