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Abstract

Bayesian structure learning allows inferring Bayesian network structure from data
while reasoning about the epistemic uncertainty—a key element towards enabling
active causal discovery and designing interventions in real world systems. In this
work, we propose a general, fully differentiable framework for Bayesian structure
learning (DiBS) that operates in the continuous space of a latent probabilistic graph
representation. Contrary to existing work, DiBS is agnostic to the form of the local
conditional distributions and allows for joint posterior inference of both the graph
structure and the conditional distribution parameters. This makes our formulation
directly applicable to posterior inference of nonstandard Bayesian network models,
e.g., with nonlinear dependencies encoded by neural networks. Using DiBS, we
devise a general purpose variational inference method for approximating distribu-
tions over structural models. In evaluations on simulated and real-world data, our
method significantly outperforms related approaches to joint posterior inference.'

1 Introduction

Discovering the statistical and causal dependencies that underlie the variables of a data-generating
system is of central scientific interest. Bayesian networks (BNs) [1] and structural equation models are
commonly used for this purpose [2-5]. Structure learning, the task of learning a BN from observations
of its variables, is well-studied, but computationally very challenging due to the combinatorially large
number of candidate graphs and the constraint of graph acyclicity.

While structure learning methods arrive at a single plausible graph or its Markov equivalence class
(MECQC), e.g., [6-9], Bayesian structure learning aims to infer a full posterior distribution over BNs
given the observations. A distribution over structures allows quantifying the epistemic uncertainty
and the degree of confidence in any given BN model, e.g., when the amount of data is small. Most
importantly, downstream tasks such as experimental design and active causal discovery rely on a
posterior distribution over BNs to quantify the information gain from specific interventions and
uncover the causal structure in a small number of experiments [10—15].

A key challenge in Bayesian structure learning is working with a posterior over BNs—a distribution
over the joint space of (discrete) directed acyclic graphs and (continuous) conditional distribution
parameters. Most of the practically viable approaches to Bayesian structure learning revolve around
Markov chain Monte Carlo (MCMC) sampling in combinatorial spaces and bootstrapping of classical
score and constraint-based structure learning methods, e.g., in causal discovery [10-15]. However,
these methods marginalize out the parameters and thus require a closed form for the marginal
likelihood of the observations given the graph to remain tractable. This limits inference to simple and
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by now well-studied linear Gaussian and Categorical BN models [16—18] and makes it difficult to infer
more expressive BNs that, e.g., model nonlinear relationships among the variables. Due to the discrete
nature of these approaches, recent advances in approximate inference and gradient-based optimization
could not yet be translated into similar performance improvements in Bayesian structure learning.

In this work, we propose a novel, fully differentiable framework for Bayesian structure learning
(DiBS) that operates in the continuous space of a latent probabilistic graph representation. Contrary
to existing work, our formulation is agnostic to the distributional form of the BN and allows for
inference of the joint posterior over both the conditional distribution parameters and the graph
structure. This makes our approach directly applicable to nonstandard BN models where neither
the marginal likelihood nor the maximum likelihood parameter estimate have a closed form. We
instantiate DiBS with the particle variational inference method of Liu and Wang [19] and present a
general purpose method for approximate Bayesian structure learning. In our experiments on synthetic
and real-world data, DiBS outperforms all alternative approaches to joint posterior inference of graphs
and parameters and when modeling nonlinear interactions among the variables, often by a significant
margin. This allows us to narrow down plausible causal graphs with greater precision and make better
predictions under interventions—an important stepping stone towards active causal discovery.

2 Background

Bayesian networks A Bayesian network (G, ®) models the joint density p(x) of a set of d vari-
ables x = x1.4 using (1) a directed acyclic graph (DAG) G encoding the conditional independencies
of x and (2) parameters © defining the local conditional distributions of each variable given its parents
in the DAG. When modeling p(x) using a BN, each variable is assumed to be independent of its
non-descendants given its parents, thus allowing for a compact factorization of the joint p(x | G, ©®)
into a product of local conditional distributions for each variable and its parents in G.

Bayesian inference of BNs  Given independent observations D = {x(l)7 o, x) }, we consider
the task of inferring a full posterior density over Bayesian networks that model the observations.
Following Friedman and Koller [20], given a prior distribution over DAGs p(G) and a prior over BN
parameters p(® | G), Bayes’ Theorem yields the joint and marginal posterior distributions

p(G,©|D) x p(G)p(©|G)p(P| G, ©), (D
p(G|D) x p(G)p(P|G) 2

where p(D | G) = [p(® | G)p(D| G, ©)d® is the marginal likelihood. Thus, p(G | D) in (2) is
only tractable in special conjugate cases where the integral over ® can be computed in closed form.
The Bayesian formalism allows us to compute expectations of the form

Epce|p) [f(G’ @)} or  Eyap [f(G)} 3)

for any function f of interest. For instance, to perform Bayesian model averaging, we would use
f(G,0)=p(x|G,0)or f(G) =p(x|G), respectively [21, 22]. In active learning of causal BN
structures, a commonly used f is the expected decrease in entropy of G after an interventjon [10-12,
14, 15]. Inferring either posterior is computationally challenging because there are (’)(d!Q(2 ) possible
DAGs with d nodes [23]. Thus, computing the normalization constant p(D) is generally intractable.

Continuous characterization of acyclic graphs  Orthogonal to the work on Bayesian inference,
Zheng et al. [9] have recently proposed a differentiable characterization of acyclic graphs for structure
learning. In this work, we adopt the formulation of Yu et al. [24], who show that a graph with
adjacency matrix G € {0, 1}9*¢ does not have any cycles if and only if h(G) = 0, where

h(G) = tr [(1+ gG)d} —d. )

If h(G) > 0, the function can be interpreted as quantifying the cyclicity or non-DAG-ness of G.
Follow-up work has leveraged this insight to model nonlinear relationships [24-27], time-series data
[28], for generative modeling [29, 30], causal inference [31-33], and contributed to its theoretical
understanding [34, 35]. So far, a connection to Bayesian structure learning has been missing.

3 Related Work

The existing literature on Bayesian Structure Learning predominantly focuses on inferring the
marginal graph posterior p(G | D). Since this requires p(D | G) to be tractable, inference is mostly



limited to BNs with linear Gaussian or Categorical conditional distributions [16—18]. By contrast, the
formulation we introduce overcomes this fundamental restriction by allowing for joint inference of the
graph and the parameters, thereby facilitating the active (causal) discovery of more expressive BNs.

MCMC Sampling from the posterior over graphs is the most general approach to approximate
Bayesian structure learning. Structure MCMC (MC?) [36, 37] performs Metropolis-Hastings in the
space of DAGs by changing one edge at a time. Several works try to remedy its poor mixing behavior
[38-40]. Alternatively, order MCMC draws samples in the smaller but still exponential space of node
orders, which typically requires a hard limit on the maximum parent set size [20]. Attempts to correct
for its unintended structural bias are themselves NP-hard to compute and/or limit the parent size
[38, 41]. By performing variational inference in a continuous latent space, the method we propose
circumvents such mixing issues and parent size limitations.

Bootstrapping The nonparametric DAG bootstrap [42] performs model averaging by bootstrapping
D, where each resampled data set is used to learn a single graph, e.g., using the GES or PC algorithms
[6, 7]. The obtained set of DAGs approximates the posterior by weighting each unique graph by its
unnormalized posterior probability. In simple cases, a closed-form maximum likelihood parameter
estimate may be used to approximate the joint posterior [14], but only if p(D | G) is tractable in the
first place.

Exact methods A few notable exceptions use dynamic programming to achieve exact marginal
inference in time O(d2?), which is only feasible for d < 20 nodes [43, 44]. In special cases, e.g., for
tree structures or known node orderings, exact inference can be performed more efficiently [45, 46].

4 A Fully Differentiable Framework for Bayesian Structure Learning
4.1 General Approach

With the goal of moving beyond the restrictive conjugate setups

required by most discrete sampling methods for Bayesian structure e e @
learning, we propose to transfer the posterior inference task into

the latent space of a probabilistic graph representation. Our result- L

ing framework is consistent with the original Bayesian structure °
learning task in (3), enforces the acyclicity of G via the latent

space prior, and provides the score of the continuous latent pos-

terior, thus making general purpose inference methods applicable Figure 1: Generative model
off-the-shelf. of BNs with latent variable Z.
This formulation generalizes the
standard Bayesian setup in (1)
where only G, ©, and x are
modeled explicitly.

Without loss of generality, we assume that there exists a latent
variable Z that models the generative process of G. Specifically,
the default generative model described in Section 2 is generalized
into the following factorization:

p(Z,G,0,D) = p(Z)p(G|Z)p(®|G)p(P|G,0) (5)

Figure 1 displays the corresponding graphical model. The following insight provides us with an
equivalence between the expectation we ultimately want to approximate and an expectation over the
posterior of the continuous variable Z:

Proposition 1 (Latent posterior expectation). Under the generative model in (5), it holds that

(a) Eyc|p) {f(G)} = Eyz D) l]Ep(GIZ) [f(G)p(DG)]] , and

Eya|z) [p(D|G)]

Eycz) [f(G,©)p(@|G)p(D|G,0)]
Epc|z) [P(O]G)p(D|G,O)]

(b) Eyc.e|p {f(G7®)} = Eyzeo|D)

A proof is provided in Appendix A.l. Rather than approximating p(G | D) or p(G, ® | D), our
goal will be to infer p(Z | D) or p(Z, ® | D) instead, which by Proposition 1 allows us to compute
expectations of the form in (3). In the following, we first discuss how to define the two factors
p(G|Z) and p(Z) in a way that models only directed acyclic graphs. Then, we provide the details
necessary to perform black box inference of the posteriors of the continuous latent variable Z.



4.2 Representing DAGs in a Continuous Latent Space

Generative model of directed graphs We define the latent variable Z as consisting of two
embedding matrices U, V € R**4 i, Z = [U, V]. Building on Kipf and Welling [47], we propose
to use a bilinear generative model for the adjacency matrix G € {0, 1}4*? of directed graphs using
the inner product between the latent variables in Z:

d d
Pa(G|Z) = HHpa(gij lug, v;) with po(gi; = 1w, v;) = oa(u] v;) (6)
i=1j#i
where o, (z) = 1/(1 + exp(—ax)) denotes the sigmoid function with inverse temperature . We
denote the corresponding matrix of edge probabilities in G given Z by G (Z) € [0, 1]?*¢ with
Ga(Z)ij := palgij = 1w, vj) . (7
Since we model acyclic graphs, which do not contain self-loops, we set p,(g;; = 1| Z) := 0. The
latent dimensionality k trades off the complexity of the variable interactions with tractability during
inference. For k > d, the matrix of edge probabilities G (Z) is not constrained in rank, and the
generative model in (6) can represent any adjacency matrix without self-loops. That said, the size
of the latent representation Z only grows O(d - k) and, in principle, k can be chosen independently
of d. Note that the formulation in (6) models directed graphs since o, (u; v;) # aa(u;rvi). We
can even interpret u; and v; as node embeddings that may encode more information than mere edge
probabilities, e.g., for graph neural networks. The fact that p,(G | Z) is invariant to orthogonal
transformations of U and V is not an issue in practice.

Acyclicity via the latent prior distribution A major constraint in learning BN is the acyclicity
of G. With a latent graph model p(G | Z) in place, we design the prior p(Z) to act as a soft constraint
enforcing that only DAGs are modeled. Specifically, we define the prior of Z as the product of
independent Gaussians with a Gibbs distribution that penalizes the expected cyclicity of G given Z:

ps(2) o exp (-8 By [(Q)] ) [N (z15:0.02) ®)

Here, h is the DAG constraint function given in (4) and [ is an inverse temperature parameter
controlling how strongly the acyclicity is enforced. As 8 — oo, the support of pz(Z) reduces to all
Z that only model valid DAGs. The Gaussian component ensures that the norm of Z is well-behaved.
Traditional graph priors of the form p(G) x f(G) that induce, e.g., sparsity of G, can be flexibly
incorporated into pg(Z) by means of an additional factor involving f(Ga(Z)) or Eyq | z)[f(G)].
Unless highlighting a specific point, we omit writing the hyperparameters « and 3 to simplify notation.

4.3 Estimators for Gradient-Based Bayesian Inference

The extended generative model in (5) not only allows us to incorporate the notoriously difficult
acyclicity constraint into the Bayesian framework. By rephrasing the posteriors p(G | D) and
p(G,® | D) in terms of p(Z | D) and p(Z, ® | D), respectively, it also makes Bayesian structure
learning amenable to variational inference techniques that operate in continuous space and rely on the
gradient of the unnormalized log posterior, also known as the score. The following result provides us
with the score of both latent posteriors. Detailed derivations can be found in Appendix A.2.

Proposition 2 (Latent posterior score). Under the generative graph model defined in (5), the gradient
of the log posterior density of Z is given by

VzEycz) [p(D]|G)]
Epc |z [p(D|G)]

which is relevant when the marginal likelihood p(D | G) can be computed efficiently. In the general
case, when inferring the joint posterior of Z and O, the gradients of the log posterior are given by

Vz Epyc| 2 [p(©,D|G)]
Eyc|z)[p(©.D|G)]
Eyc|z) |[Vepr(©,D|G)]
Eycz) [p(©,D|G)]
where p(©,D|G) = p(® | G)p(D | G, ®), which is efficient to compute by construction.

(a) Vzlogp(Z|D) = Vzlogp(Z) + )

(b)  Vzlogp(Z,0©|D) = Vzlogp(Z)+ (10

(¢)  Velogp(Z,©|D) =

Y



The expectations have tractable Monte Carlo approximations because sampling from p(G | Z) in (6)
is simple and parallelizable. The gradient terms of the form VzE, (g | z)[ -], which also appear inside
Vzlogp(Z), can be estimated using two different techniques, depending on the BN model inferred.

Differentiable (marginal) likelihood Using the Gumbel-softmax trick [48, 49], we can separate
the randomness from Z when sampling from p(G | Z) and obtain the following estimator:

VzEy |2 [p(D]|G)] = Ey,) [VG P(P|G)|gg. (g  VzGrL.Z) (12)
where L ~ Logistic(0, 1)4*? i.i.d.. The matrix-valued function G (-) is defined elementwise as

or (lij+oufv;) ifi#j
G- (L, 2);; = {0 s 7 ifi—j

The estimator also applies to p(®, D | G). However, the gradients Vgp(D | G) or Vgp(D, O | G),
respectively, need to be well-defined and computable, which depends on the parameterization of
the BN model we aim to infer. In case p(D | G) or p(®, D | G) is only defined for discrete G, it is
possible to evaluate Ve p(D | G) or Vap(©, D | G) using hard Gumbel-max samples of G (i.e., with
7 = 00) and a straight-through gradient estimator. Since the DAG constraint h(-) is differentiable, the
Gumbel-softmax trick can always be applied inside V7 log p(Z). In practice, we always use 7 = 1.

Non-differentiable (marginal) likelihood In general, Vap(D | G) or Vap(D, © | G) depending
on the inference task might be not available or ill-defined. In this setting, the score function estimator
provides us with a way to estimate the gradient we need [50]:

VzEpc|2)[p(P|G)] =Eyc)|z) [(p(D |G) —b) Vzlogp(G|Z) (14)

The estimator likewise applies for p(®, D | G) in place of p(D | G). Here, b is a constant with respect
to G that can be used for variance reduction [51], and Vz log p(G | Z) is trivial to compute. The
derivations of both (12) and (14), alongside a more detailed discussion, can be found in Appendix B.

13)

5 Particle Variational Inference for Structure Learning

In the previous section, we have proposed a differentiable formulation for Bayesian structure learning
(DiBS) that is agnostic to the form of the local BN conditionals and, more importantly, translates
learning discrete graph structures into an inference problem over the continuous variable Z. In the
following, we overcome the remaining challenge of inferring the intractable DiBS posteriors p(Z | D)
and p(Z, © | D) by employing Stein variational gradient descent (SVGD) [19], a gradient-based and
general purpose variational inference method. The resulting algorithm infers a particle approximation
of the marginal or joint posterior density over BNs given observational data.

SVGD for posterior inference  Since Proposition 2 provides us with the gradient of the latent poste-
rior score functions, we can apply SVGD off-the-shelf. SVGD minimizes the KL divergence to a target
distribution by iteratively transporting a set of particles using a sequence of kernel-based transforma-
tion steps. We provide a more detailed overview of SVGD in Appendix C. Following this paradigm
for DiBS, we iteratively update a fixed set {Z(™ }M_, or {Z("™) @™ }M_ to approximate p(Z | D)
or p(Z,® | D), respectively. If the BN model we aim to infer has a properly-defined likelihood
gradient with respect to G, we use the Gumbel-softmax estimator in (12) to approximate the posterior
score. Otherwise, we resort to the score function estimator in (14). We use a simple kernel for SVGD:

1 1
k(2. ©), (2, ) = exp (—7|z - Z’n%) + exp (—Wne . ®’|3) as)

with bandwidths ~,, vy. For inference of p(Z | D), we leave out the second term involving @, ©’.
While Z is invariant to orthogonal transformations, more elaborate kernels that are, e.g., invariant
to such transforms empirically perform worse in our experiments.

Annealing o and 3 The latent variable Z not only probabilistically models the graph G, but can
also be viewed as a continuous relaxation of G, with « trading off smoothness with accuracy. As
a — 00, the sigmoid o, (+) converges to the unit step function. Hence, as « — oo in the graph model
Pa(G | Z) in (6), the expectations in Proposition 1 simplify to:

Eyc|p) {f(G)} — Epz|p) {f(Goo(Z))}

(16)
Eyc.e|D) |:f(Ga®)} — Epz,e|D) {f(Gw(Z),Q)}



Algorithm 1 DiBS for p(G | D) using Stein variational gradient descent [19]

Input: Initial set of latent particles {Z(m) }m 1, kernel k, schedules for o, B¢, and stepsizes 7
Output: Set of discrete graph particles {G™ }2_, approximating p(G | D)

1: Incorporate prior belief of p(G) into p(Z) > See Section 4.2
2: foriterationt =0to 7T — 1 do
3: Estimate score Vz log p(Z | D) given in (9) for each ng) > See (12) and (14)
4: for particle m = 1to M do
5: VA T Z\™ + qb (Z{™) > SVGD transport step
M
where ¢ (-) := Z [ (k) )V z(® log p(Z; z |D)+V (mk(Z( ) )]
k:
6: return {G oo (Z(m)) M > See (16) and (17)

where G (Z) denotes the single limiting graph implied by Z = [U, V] and is defined as

1 ifu/v;>0andi#j

17
0 otherwise an

Goo(Z)ij = {

See Appendix A.3. In this case, p, (G | Z) converges to representing only a single graph. To be able
to invoke this simplification, we anneal o — oo over the iterations of SVGD and, upon termination,
convert the latent variables Z to the single discrete G (Z). Furthermore, we similarly let 5 — oo
in the latent prior pg(Z) over the iterations to enforce that the latent representation of G only models
DAGs. By Equation (16), the resulting DAGs form a consistent particle approximation of p(G | D)
or p(G, ©® | D), respectively. Algorithm 1 summarizes DiBS instantiated with SVGD for inference
of p(G | D). The general case of inferring p(G, © | D) is given in Algorithm 2 of Appendix D.

Single-particle approximation SVGD reduces to regular gradient ascent for the maximum a
posteriori estimate when transporting only a single particle [19]. In this special case, DiBS with
SVGD recovers some of the existing continuous structure learning methods: gradient ascent on a linear
Gaussian likelihood solves an optimization problem similar to NOTEARS [9]. The cyclicity penalizer
acts analogously. However, not only does DiBS automatically turn into a full Bayesian approach when
using more particles, it is also not limited to settings such as linear Gaussian conditionals, where the
adjacency matrix G and the parameters ® can be modeled together by a weighted adjacency matrix.

Weighted particle mixture In high dimensional settings, it may be beneficial to move beyond a
uniform weighting of the inferred particles of BN models to approximate p(G | D) or p(G, © | D).
We consider a particle mixture that weights each particle by its unnormalized posterior probability
p(G, D) or p(G, ©, D), respectively, under the BN model. While we do not have a strong theoretical
justification, our motivation is that the empirical distribution over the super-exponential space of DAGs
may result in a crude approximation of the posterior mass function. In our experiments, DiBS and its
instantiation with SVGD are used interchangeably, and DiBS+ denotes the weighted particle mixture.

6 Evaluation on Synthetic Data
6.1 Experimental Setup

Synthetic data We compare DiBS to a set of related methods in marginal and joint posterior
inference of synthetic linear and nonlinear Gaussian BNs. Our setup follows [9, 24, 27, 52], who
consider inferring BNs with Erd6s-Rényi and scale-free random structures [53, 54]. For each
graph, here with d € {20, 50} nodes and 2d edges in expectation, we sample a set of ground truth
parameters and then generate training, held-out, and interventional data sets. In all settings, we use
N =100 observations for inference, emulating significant uncertainty about the graph structure.

Graph priors  For Erd6s-Rényi graphs, all methods use the prior p(G) oc ¢l Gl (1 q)( )= Gl

capturing that each edge ex1sts independently w.p. q [53]. For scale-free graphs, we define the pr10r
p(G) x Hl L(14+]/G,"|]1) =2, analogous to their power law degree distribution p(deg) ~ deg > [54].
Here, G, is the i-th column of the adjacency matrix. DiBS implements either prior by using the
corresponding term above as an additional factor in p(Z) with G := G (Z) (see Section 4.2).
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Figure 2: Marginal posterior inference of 20-node linear Gaussian BNs using the BGe marginal
likelihood. Higher scores on AUROC and lower scores on E-SHD, neg. MLL, neg. I-MLL are
preferred. DiBS+ performs competitively across all metrics, in particular E-SHD and neg. (I-)MLL.

Metrics  Since neither density nor samples of the ground truth posteriors are available for BNs
of d € {20, 50} variables, we follow the evaluation metrics used by previous work. We define the
expected structural Hamming distance to the ground truth graph G* under the inferred posterior as

E-SHD(p, G*) := Y _p(G|D) - SHD(G, G") (18)
G

where SHD(G, G*) counts the edge changes that separate the essential graphs representing the MECs
of G and G* [8, 55]. In addition, we follow Friedman and Koller [20] and Ellis and Wong [41]
and compute the area under the receiver operating characteristic curve (AUROC) for pairwise edge
predictions when varying the confidence threshold under the inferred marginal p(g;; = 1| D). Finally,
following Murphy [10], we also evaluate the ability to predict future observations by computing the
average negative (marginal) log likelihood on 100 held-out observations D'

neg. LL(p, D) := — > p(G,©|D) - logp(D**' | G, ©) (19)
G,®

When inferring p(G | D), the corresponding neg. MLL metric instead uses p(D** | G). Analogously,
we also compute the interventional log likelihoods I-LL and I-MLL, a relevant metric in causal infer-
ence [10, 12]. Here, an interventional data set (D™, T) is instead used to compute p(D'™ | G, ©,T)
and p(D™| G, Z) in (19), respectively. Scores are the average of 10 interventional data sets. All
reported metrics in this section are aggregated for inference of 30 random synthetic BNs.

In the remainder, DiBS is always run for 3,000 iterations and with k = d for inference of d-variable
BNs, which leaves the matrix of edge probabilities unconstrained in rank. We discard a DiBS particle
in the rare case that a returned graph is cyclic. Complete details on Gaussian BNs, the evaluation
metrics, hyperparameters, efficient implementation, and all baselines can be found in Appendix E.

6.2 Linear Gaussian Bayesian Networks

Marginal posterior inference For linear Gaussian BNs, we first evaluate the classical setting of
inferring the marginal posterior p(G | D) since p(D | G) can be computed in closed form. To this
end, we employ the commonly used Bayesian Gaussian Equivalent (BGe) marginal likelihood, which
scores Markov equivalent structures equally [16, 17]. The form of the BGe score requires DiBS
to use the score function estimator in (14).

We compare DiBS with the nonparametric DAG bootstrap [42] using the constraint-based PC [7]
and the score-based GES [6] algorithms (BPC and BGES). For MCMC, we only consider structure
MCMC (MC?) [37] as a comparison. Order MCMC or hybrid DP approaches bound the number of
parents and thus often exclude the ground truth graph a priori, especially for scale-free BN structures.
Burn-in and thinning for MC? are chosen to make the runtime comparable with DiBS. The DAG
bootstrap methods typically run significantly faster. In the remainder of the paper, each method uses
30 samples to approximate the posterior over BNs.

Figure 2 summarizes the results for 30 randomly generated BNs with d = 20 nodes. We find that
DiBS+ performs well compared to the other methods, all of which were specifically developed for
the marginal inference scenario evaluated here. DiBS+ appears to be preferable to DiBS.
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Figure 3: J oint posterior inference of graphs and parameters of hnear Gaussian networks with d = 20
nodes. DiBS+ performs best across all of the metrics. BGES*, the next-best alternative, yields
substantially worse performance in E-SHD, i.e., in recovering the overall graph structure and MEC.
Recall that higher AUROC and lower E-SHD, neg. LL, and neg. I-LL scores are preferable.

Joint posterior inference ~ When inferring the joint posterior p(G, ® | D), we can employ a
more explicit representation of linear Gaussian BNs, where the conditional distribution parameters
are standard Gaussian. Here, DiBS can leverage the Gumbel-softmax estimator in (12) because
p(G, ®| D) is well-defined when G lies on the interior of [0, 1]%¢ (see Appendix E.1). To provide
a comparison with DiBS in the absence of a comparable MCMC method, we propose two variants of
MC? as baselines. Metropolis-Hastings MC? (M-MC?) jointly samples parameters and structures,
and Metropolis-within-Gibbs MC? (G-MC?) alternates in proposing structure and parameters [56].
Moreover, we extend the bootstrap methods by taking the closed-form maximum likelihood estimate
[57] as the posterior parameter sample for a given graph inferred using the BGe score (BPC* and
BGES™), an approach taken in, e.g., causal BN learning [14].

Figure 3 shows the results for d = 20 nodes, where E-SHD and AUROC are computed by empirically
marginalizing out the parameters. We find that DiBS+ is the only considered method that performs
well across all of the metrics, often outperforming the baselines by a significant margin. As for
marginal posterior inference of linear Gaussian BNs, DiBS+ performs slightly better than DiBS.

6.3 Nonlinear Gaussian Bayesian Networks

We also consider joint inference of nonlinear Gaussian BNs where the mean of each local conditional
Gaussian is parameterized by a 2-layer dense neural network with five hidden nodes and ReLU
activation functions (see Appendix E.1). Since the marginal likelihood does not have a closed form,
we are unable to use BPC* and BGES™ as a means of comparison. Figure 4 displays the results for
d = 20 variables, where a given BN model has |®| = 2,220 weights and biases. Analogous to joint
inference of linear Gaussian BNs, DiBS and DiBS+ outperform the MCMC baselines across the
considered metrics. To the best of our knowledge, this is the first time that such nonlinear Gaussian
BN models have been inferred under the Bayesian paradigm, which opens up exciting avenues in the
active learning of more sophisticated causal structures.

Appendix F complements Sections 6.2 and 6.3 with results for d = 50 variables, where DiBS+
likewise performs favorably when jointly inferring p(G, © | D). For marginal posterior inference of
p(G | D) under the BGe marginal likelihood, DiBS appears to require more Monte Carlo samples to
compensate for the high variance of the score function estimator in this high-dimensional setting.

6.4 DiBS with SVGD: Additional Analyses and Ablation Studies

Having compared DiBS and its instantiation with SVGD to existing approaches, we devote Appendix
G to empirically analyzing some properties of the algorithm. One of our key results is that, all other
things held equal, substituting our inner product model in (6) with p,(g;; = 1|Z) = 04(2;;), where
single scalars encode the edge probabilities, results in significantly worse evaluation metrics.

We additionally study the uncertainty quantification in (non)identifiable edge structures and show the
effects of reducing the latent dimensionality & or the number of iterations 7". Our findings suggest
that reducing either hyperparameter still allows for competitive posterior approximations and enables
trading off posterior inference quality with computational efficiency, e.g., in large-scale applications.
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Figure 4: Joint posterior inference of nonlinear Gaussian BNs with d = 20 nodes. Here, the mean of
the local conditional distribution of each node is parameterized by a 2-layer neural network with five
hidden nodes. DiBS and DiBS+ perform favorably across the board, particularly in the graph metrics.

7 Application: Inferring Protein Signaling Networks From Cell Data

A widely used benchmark in structure learning is the Table 1: Inference of protein signaling
proteomics data set by Sachs et al. [3]. The data contain pathways with Gaussian BNs. Metrics
N = 7,466 continuous measurements of d = 11 proteins are the mean &= SD of 30 random restarts.
involved in human immune system cells as well as an E-SHD AUROC
established causal network of their signaling interactions. MC3 34.0E07 0616 L0027
BPC 25.54+23 0.566 £ 0.020
1 BGES 337+ 1.7 0.641 £ 0.030

We infer both linear and nonlinear Gaussian BNs with

Erd6s-Rényi graph priors exactly as in Section 6. The )

AUROC results in Table 1 indicate that the posterior by gigg + 2471‘7‘ i ?g ggg; i gg:g
DiBS under the BGe model provides the most calibrated M-MC® 373135 0551 £0.078
edge confidence scores. Not penalizing model complexity G-MC® 305432 0527+ 0067
as much, the marginal BGe posterior of DiBS (DiBS+) av-  § DiBS 234 4+05 0598 & 0.052
erages a high expected number of 39.0 (35.0) edges, com- DiBS+ 229+27 0.557+ 0.052
pared to 12.7 (14.2) and 12.6 (14.2) for its joint posteriors M-MC® 252 +3.0 0.526+ 0.084

over linear and nonlinear BNs, respectively. Appendix H G-MC® 351432 0.540 & 0.080
provides further details and analyses on this matter. The I DiBS 22.6 £ 0.5 0.577 +0.039
[E-SHD scores show that, among all the methods, DiBS DiBS+ 22.8+£1.9 0.53540.041
is closest in structure to the consensus network when 1 Linear Gaussian BN; graph only via BGe marginal lik.
performing joint inference with nonlinear Gaussian BNs. ® Linear Gaussian BN: graph and parameters jointly
This further highlights the need for nonlinear conditionals Nenlinear Gaussian BN: graph and parameters jointly
and joint inference of the graph and parameters in complex real-world settings.

8 Conclusion

We have presented a general, fully differentiable approach to inference of posterior distributions over
BNs. Our framework is based on a continuous latent representation of DAGs, whose posterior can
be equivalently inferred—without loss of generality and using existing black box inference methods.
While we have used SVGD [19] for this purpose, our general approach could also be instantiated with,
e.g., gradient-based sampling methods that rely on the score of the target density [58, 59]. This may
improve upon the asymptotic runtime of DiBS with SVGD, which scales quadratically in the number
of sampled particles. We expect that our end-to-end approach can be extended to handle missing and
interventional data as well as to amortized contexts, where rich unstructured data is available.

Broader impact Our work is relevant to any scientific discipline that aims at inferring the
(causal) structure of a system or reasoning about the effects of interventions. If algorithms and
decisions are grounded in the structural understanding of a data-generating system and take into
account the epistemic uncertainty, we expect them to be more robust and have fewer unforeseen
side-effects. However, the assumptions allowing for a causal interpretation of DAGs, e.g., the
absence of unmeasured confounders, are often untestable and to be taken with care [60], particularly
in safety-critical and societally-sensitive applications. Hence, while potential misuse can never be
ruled out, our presented method predominantly promises positive societal and scientific impact.
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A Proofs of the Main Results

A.1 Proposition 1

Proof For ease of understanding, we recall that the generative model in (5) factorizes the joint
distribution as p(Z, G, ©,D) = p(Z)p(G | Z)p(® | G)p(D | G, ©). First, let us consider case (a),
the setting where the marginal likelihood p(D \ G) can be computed in closed form. We get

Eyc|p)f(G Zp G|D)f (A1)
— Zp (G, D G) (A2)
_ / p(Z, G D p(Z,G.D(G) (A3)

/ G|z O0(D|G)S) a)
by the generative model in (5)
p(Z|D)p(G|Z)p(P|G)f(G)
Z / oD|2) dZ (A.5)
since p(z| D) = Z2RD1Z) ﬁg'z)
_ >cP(G|Z)p(P|G)f(G) ,
_/Zp(Z|D) 2D|Z) dz rearranging (A.6)
_ >cP(G|Z)p(D|G)f(G)
R R R o .
by the law of total probability
_ 2cP(G|Z2p(D|G)/(G) AS
fre S G 6 Ao

expanding p(G, D | Z) by the generative model in (5)

[Ep(G 1z)[f(G)p(D|G)] (A.9)

Eyc|z)[p(D]G)]

as desired for (a).

Finally, let us consider (b), the general case. The derivation essentially follows the same ideas as for
(a) but does not marginalize out ©.

Eyce|p)f(G,0) (A.10)

:Z/@p(G,®|D)f(G,®)d® (A11)
G

:Z/ p(Q&@{(G,@)d@ (A.12)
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_ p(Z)p(G|Z)p(®|G)p(P|G,0)[(G,\)
_%: /@ /Z e dZd®

by the generative model in (5)

B p(Z.© | D)p(G | Z2)p(© | G)p(D| G, ©) (G, ©)
=2 L (D6 Z) 1240
P(Z)p(©.D|2)

since p(Z,0© | D) = D)
p

_ 2>.cP(G|Z)p©|G)p(D|G,0)f(G,8)
- [ [nzep A 1246
rearranging

>cP(G|Z)p(®|G)p(P|G,0)[(G,O)
= p(Z,0 | D dZde
[, /rzeip) >c1(G.0.D[2Z)
by the law of total probability

>.cP(G|Z)pO|G)p(D|G,0)f(G,8)
= p(Z,0©|D dZdOe
fo Jrzerm e e Gl G o)
expanding p(G, ©, D | Z) by the generative model in (5)

Eyc|z)[f(G,©)p(®|G)p(D|G,0)]
Eyc)z) [p(©|G)p(D|G,0)]

=Epz.0|D)

which is the statement in (b). [

A.2 Proposition 2

Proof We will derive the gradients of the unnormalized posterior since

Vzlogp(Z|D) = Vzlogp(Z,D) — Vzlogp(D) = Vzlogp(Z,D)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

and analogously for the other two expressions. Through straightforward manipulation and using the

fact that Vi log f(x) = Vx f(x)/f(x), we obtain

Vzlogp(Z,D) = Vzlogp(Z) + Vzlogp(D| Z)
Vz p(D|Z)
p(D|Z)
Vz[ Yo p(G|Z)p(D|G)]
>eP(G|Z)p(D|G)
Vz Eyc |z p(D]G)]
Epc|2)p(D]G)]

=Vzlogp(Z) +

=Vzlogp(Z) +

=Vzlogp(Z) +

Analogously, we get
Vzlogp(Z,®,D) = Vzlogp(Z) + Vzlogp(®,D|Z)
VZ p(®7 D | Z)
p(©,D|Z)
Vz[ Y e p(G|Z)p(©,D|G)]

= Vzlogp(Z) +

=Vzlogp(Z) +

2.aP(G[Z)p(®,D|G)
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(A21)

(A22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



Vz Eyc|z2)p(©,D]G)]

=Vzlogp(Z) + (A.28)
Epc2)p(©,D]G)]
Lastly, using the same ideas as above, we arrive at

Velogp(Z,0,D) =Velogp(Z)+ Ve logp(®,D|Z) (A.29)
= A.30)

»(©.D[Z) (
_ Ve[Yer(G|Z)p(©.D|G)] A

>.cp(G|Z)p(®,D|G)
>cP(G[Z)p(®,D|G)
E Vep(®,D|G

_Epeiz [Ven( |G)] 0 (A33)

EyczP(©,D]|G)]

In the above, without any additional factor modeling a prior belief over graphs, the score of the latent
prior pg(Z) as defined in (8) is given by

1
VZ logpﬁ(Z) = —5 Vz ]Ep(G|Z) [h(G)] — —Z (A34)

2
0z

Practical considerations Estimating expectations of the form E,, g | z)[f(G)] with Monte Carlo
sampling can be numerically challenging when f are probability densities and thus often close to
zero. In practice, we recommend the log-sum-exp trick for applying Proposition 2. Let us define

" M
LYE{z(™} := log (Z exp (x(m))> (A.35)

m=1
m=1

For M Monte Carlo samples G(™) ~ p(G | Z), we can rewrite the estimator for the expectation as

M M
Eya|z)[f(G)] = % > F(GIM) = exp <log (Z f(G(m))> —log M> (A.36)
m=1

m=1
M
= exp <LE]§J { log f(G(m)) } — log M) (A.37)

Computing LYE can be made numerically stable by subtracting and adding maxm{:c(m)} before and
after applying LY.E to {z("™)}, respectively. Stable LYE can be extended to handle negative-valued
f inside the expectation, e.g., for the gradient of f, and to the ratios of expectations in Proposition 2.

A.3 Equations (16) and (17)

Proof The sigmoid function converges to the unit step function, i.e. o, (z) = 1[z > 0] as @ — .
Hence, the edge probabilities G,,(Z) defined in (7) converge to a (binary) matrix G as o — 0.
Extending the notation of (7), we will denote this single limiting graph implied by Z as G, (Z)
where

1 ifu/v;>0andi#j

0 otherwise

G (Z)ij = {

The above implies that when the temperature parameter « is annealed to co, the probability mass
function and correspondingly the expectation simplify:

Asa— o0: po(G|Z) = 1[G = G (Z)]
Epo(c12)lf(G)] = f(G(2Z))

Again, let us first consider case (a). Starting with Proposition 1(a) in the first step, we can use the
above insight to simplify the inner expectations:

(A.38)

E,.(c|z) [f(G)p(D|G)]
E,.(c|z)[p(D|G)]

Eycp) {f(G)] =E,z|p) (A.39)
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aroo [(G(2))p(D| G (Z))
- E“”’[ »(D|Ge(2)) ] (A40
= Epzp) [ /(G (2))] (A41)
Analogously, we get for the general case (b):
Ey.(c |z [f(G,©)p(©|G)p(D|G,0O)]
Epc.e|p) {f(G 9)] Epz.e| D) [ E,.c 2 [p(©|G)p(D|G,0)] ] (A42)
g f(Gx(Z),0)p(© | Gx(Z))p(DP | G (Z), ©)
— Frzei l P(©]G(Z)p(D| G (Z),0) ] A
~Eyz.0/p) | /(Gx(2),0)] O (A44)

B Gradient Estimation for Bayesian Inference

To derive the expressions for the gradient estimators in (12) and (14) for both the marginal likelihood
and the likelihood cases, we will use a generic function f(G) as a placeholder for either p(D | G) or
p(D| G, ®), since the results hold for general densities f(G).

B.1 Gumbel-Softmax Estimator for the Likelihood Gradient

In general, for a Bernoulli random variable X with p(X = 1) = ¢, it holds that

X L 1[Gy +logq > Gy +log(1 — q)] (B.1)

when Gy, G; ~ Gumbel(0, 1). This is the Gumbel-max trick. Since the unit step function 1[-] does
not have an informative gradient, Maddison et al. [48] and Jang et al. [49] have proposed to use the
sigmoid function o (-) with parameter 7 as a soft relaxation of 1[-].

Using this so-called Gumbel-softmax trick, we can reparameterize the entries of G under the graph
model in (6). Starting from the Gumbel-max equality in (B.1), we rearrange the inequality inside
the indicator into the form “> 0” and apply the sigmoid relaxation with parameter 7. We obtain the
following soft relaxation for each entry of G:

gij R oy (G1 — Gy +logo,(u] vj) —log(1 — aa(ujvj))> (B.2)
ga(u vj)
= (e (GT) ®
B exp(au] v;) exp(au/ v;) + 1))
=0, (L + log (exp(au VJ) 1 1 (B.4)
=0, (L + log (exp(aujvj))) (B.5)
=0, (L + au;rvj) (B.6)

where L ~ Logistic(0, 1) since L £ Gy — G when Go,G1 ~ Gumbel(0, 1). For i = j, we set
gi; := 0 by default in accordance with the graph model in (6). Since this allows us to separate
the randomness in sampling from the distribution p(G | Z) from the values of Z, we can move the
gradient operator inside the expectation and obtain the estimator given in (12):

VzEyc 2)[f(G)] = Eyw) [Vz F(G-(L, Z))}

(B.7)
= Eyw) | Vo £(G)]g_g 1.z V2 G-(L.2)]

While the reparameterization trick generally provides a lower variance estimate of the gradient, the
form in (12) is biased when 7 < oo because we use a soft relaxation of the true distribution. In
addition, the estimator in (12) requires that Vgp(D | G) or Vap(©®, D | G) is available, depending
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on the inference task. In case p(D | G) or p(©, D | G) is only defined for discrete G, it is possible to
evaluate Vgp(D | G) or Vep(®, D | G) using hard Gumbel-max samples of G (i.e., with 7 = 00).
As before, however, one would use soft Gumbel-softmax samples in Vz G, (L, Z) to obtain an
informative gradient. Lastly, we can use this estimator to approximate the score of the latent prior
Vzlog p(Z) given in (8) because the acyclicity constraint h(G) is differentiable with respect to G.

B.2 Score Function Estimator for the Likelihood Gradient

To arrive at the estimator in (14), we expand the gradient expression as

VzByc 2 [f(G)] =D f(G)Vzp(G|Z) = Zf p(G|Z)Vzlogp(G|Z)  (B.B)
G

=Epc|z) [f(G) Vz logp(G | Z)} (B.9)

where (B.8) uses the fact that Vzlogp(G|Z) = Vzp(G|Z)/p(G|Z). Finally, we recall the
well-known property of the score function that E,, (| z)[Vz log p(G |Z)] = 0. Due to this, for any
constant b as written in (14), the estimator is unbiased because the additional term involving b has
zero expectation. The constant can be used to reduce the variance of the Monte Carlo estimator [51].
In our experiments, we always use b = 0.

C Background: Stein Variational Gradient Descent

This section describes Stein variational gradient descent (SVGD) by Liu and Wang [19]. The overview
is meant as supplementary material for Section 5, where we propose to use SVGD for inferring the
DiBS posteriors p(Z | D) and p(Z, © | D). In contrast to sampling-based MCMC or optimization-
based variational inference methods, SVGD iteratively transports a fixed set of particles to closely
match a target distribution, akin to the gradient descent algorithm in optimization. We refer the reader
to Liu and Wang [19] for additional details.

Let p(x) with x € X be a differentiable density that we want to sample from, e.g., to estimate
an expectation. Starting from a smooth reference density ¢(x), SVGD aims to find a one-to-one
transform t : X' +— A’ such that the transformed density g (X) with X := t(x) minimizes the
KL-divergence to p. In particular, Liu and Wang [19] propose to use the incremental transform

t(x) = x+1 ¢(x) (€D

When || is sufficiently small, the Jacobian of t has full rank and t is one-to-one. The key result by
Liu and Wang [19] links the incremental transform t in (C.1) to prior work on reproducing kernel
Hilbert spaces (RKHSs). The authors show that if ¢ lies in the unit ball of the RKHS induced by a
kernel k, then the transform t maximizing the descent on the KL divergence from gj) to p uses an
incremental update ¢ proportional to

&5 (1) = Eq) [k(x,) Vi log p(x) " + Vick(x, )] (C.2)

This suggests an iterative procedure of repeatedly applying the update of (C.1) with ¢ = o7 ,(-)
from (C.2) to a finite set of randomly initialized particles {x("™)}M_, At each iteration ¢, the m-th
particle x(™) is then deterministically updated according to:

x 1 <™ ¢(x<m’>

(C.3)
where ¢(x =" Z [ (k) x) V X logp( )-i—V (k)k( " )>X)

For sufficiently small step sizes 7, the sequence of particles eventually converges, in which case
the transform t reduces to the identity mapping. The particle update in (C.3) consists of a gradient
ascent term driving the particles to high-density regions, and a term involving Vyk(x, -) that acts as
a repulsive force between particles, preventing them from collapsing into the modes of p(x).
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D General Algorithm

Algorithm 2 DiBS for p(G, © | D) using Stein variational gradient descent [19]

Input: Initial latent and parameter particles {(Z\™, ®{™)}M_, kernel k, schedules for n;, cvr, B

Output: Set of graph and parameter particles {(G ™, @™)}2_, approximating p(G, ® | D)
1: Incorporate prior belief of p(G) into p(Z) > See Section 4.2
2: for iterationt =0to 7T — 1 do
3: Estimate score Vz log p(Z, ® | D) given in (10) for each ng) > See (12) and (14)
4: Estimate score Ve log p(Z, ® | D) given in (11) for each @i’”)
S: for particle m = 1 to M do
6: Zi’ff — 7™ 4y, pZ (Z§m>7 @Em)) > SVGD transport step
M
1
where ¢tz(7 ) = M Z |:k((Z1(5k% egk))7 ('7 ) ) vzgk) Ing(zgk)7 G)ik) ‘ D)
k=1
+VZ1(:M k((Zﬁk), @ik)), (%) )}
7 O] « O+, ¢7 (2", 0™
where ¢ (-, -) is analogous to ¢Z (-, -) but using gradients V g instead of Vi)
t t
8: return {(GOO(Z(T"L)), B(Tm>) M_ > See (16) and (17)

E Experimental Details

E.1 Gaussian Bayesian Networks

In our experiments, we consider Bayesian networks with Gaussian local conditional distributions of
each variable given its parents. For both linear or nonlinear Gaussian BNs, which will be defined
presently, the generative model for synthetic data simulation as well as the parameter prior used for
joint inference are set to standard Gaussian distributions. We fix the observation noise to o2 = 0.1
both during synthetic data generation and joint posterior inference.

Linear Analogous to linear regression, linear Gaussian BNs model the mean of a given variable as
a linear function of its parents:

d
p(X | G7 G)) = HN(Z}‘; B;FXpa(i)702)
i=1

or p(x|G,0)=N(x;(Go®) x,0°I)

(E.1)

[P

where “o” denotes elementwise multiplication. In our experiments, DiBS uses the second parameteri-
zation in (E.1) to allow for a constant dimensionality of the conditional distribution parameters ®
and make the likelihood well-defined for the Gumbel-softmax estimator in (12).

When inferring the marginal posterior p(G | D) for linear Gaussian BNs, we follow the predominant
choice in the literature and employ the Bayesian Gaussian Equivalent (BGe) marginal likelihood,
under which Markov equivalent structures are scored equally [16, 17]. Details on the computation of
the BGe score are provided by Kuipers et al. [61]. Following the notation of Geiger and Heckerman
[17] and Kuipers et al. [61], we use the standard effective sample size hyperparameters «,, = 1 and
o, = d + 2 as well as the diagonal form of the Wishart inverse scale matrix for the Normal-Wishart
parameter prior underlying the BGe score.

Nonlinear The interaction between variables x can straightforwardly be extended to be nonlinear,
e.g., using neural networks. In Section 6.3, we follow Zheng et al. [27] and consider (fully connected)
feed-forward neural networks (FFNs) of the form
FEN(-;0):RY 5 R
(E.2)
FFN(u; ©) := G(L)or( . @(2)0(6(1)u + 0,()1)) + 01()2) e ) + OISL)
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with weights @) € R%*di-1 biases BZE[) € R% and elementwise activation function o : R — R.
Zheng et al. [27] show that the class of fully connected neural networks in (E.2) that do not depend
on the value of uy, is equivalent to the class of fully connected neural networks in (E.2) where the k-th
column of ®() equals zero. This insight allows us to define a nonlinear Gaussian BN parameterized
by a fully connected neural network:

d
p(x|G,©O) = H/\/(wi; FEN(G] ox;©,), 02) (E.3)
=1

As required for a BN, each variable is independent of its non-descendants given its parents. The mask
representation in (E.1) and (E.3) is equivalent to the concept of a structural gate used by Kalainathan
et al. [62]. Note that the conditional distribution parameters for a single nonlinear Gaussian BN of
the form in (E.3) contain the weights and biases of d different neural networks, one for the local
conditional distribution of each node.

E.2 Evaluation metrics

We provide additional details on the evaluation metrics used throughout the paper. Bayesian structure
learning beyond five variables is notoriously difficult to evaluate since the ground truth posterior is
not accessible. We hence rely and build on the metrics established in the literature.

Expected structural Hamming distance The structural Hamming distance SHD (G, G*) between
two graphs G and G* counts the edge changes that separate the essential graphs representing the
MECs of G and G* [8, 55]. We define the expected structural Hamming distance to the ground truth
graph G* under the inferred posterior as

E-SHD(p,G*) := Y _p(G|D) - SHD(G, G") .
G

Empirically, the E-SHD is similar to the L; edge error used by Tong and Koller [11] and Murphy
[10], but also takes into account the MEC. The E-SHD is computed via Monte Carlo estimation of
the expectation using samples from the posterior. Note that the DAG bootstrap variants and DiBS+
use the weighted mixture rather than the empirical distribution of samples. In the joint inference
setting, we empirically marginalize out ® to obtain p(G | D).

Receiver operating characteristic The marginal posterior p(G | D) provides a confidence estimate
p(gi; = 1| D) for whether a given edge (i, j) is present in the ground truth DAG G*. Recall that
the marginal posterior edge probability p(g;; = 1| D) is the posterior mean of an indicator for the
presence of that edge, i.e., p(gi; = 1|D) = E,c|p)llgi; = 1], which amounts to counting the
proportion of graphs with g;; = 1 (and to weighted counting for the DAG bootstrap variants and
DiBS+). The receiver operating characteristic (ROC) curve is then obtained by viewing the presence
of each of the d? possible edges in a d-node graph as a binary classification task and varying the
decision threshold from O to 1 under our confidence estimates p(g;; = 1| D). The area under the
receiver operating characteristic curve (AUROC) evaluates faithful uncertainty quantification of the
posterior. In general, random guessing achieves an AUROC of 0.5 in expectation; a perfect classifier
achieves an AUROC of 1.

Held-out log likelihood We also evaluate the ability to predict future observations by computing
the average negative log likelihood on 100 held-out observations D' defined as

neg. LL(p, D) := = > p(G,©|D) - logp(D**'| G,O) .
G,®

As for E-SHD, the neg. LL is a posterior mean and thus computed via Monte Carlo estimation using
samples from the posterior. When inferring p(G | D), the corresponding neg. MLL metric uses the
marginal likelihood p(D™" | G) instead of the likelihood p(D**' | G, ©).

Held-out log interventional likelihood Lastly, to capture relevant performance metrics in causal
inference [10, 12], we also compute the negative interventional log likelihood. Given an interventional
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data set (D™, T), the interventional likelihood is given by

p(0"G,0,7) = [] []r@"[x&)0))

x(mep j=1

J¢T
where xq; are the values of the parents of variable j in G, and 8; parameterizes the local conditional
distribution of j. The neg. I-LL and neg. I-MLL metrics are defined analogous to the neg. LL and neg.
MLL in (19) but use the interventional likelihood in (E.4) instead of the observational likelihood. For
marginal posterior inference, we likewise use the interventional marginal likelihood p(D™ | G, T)
instead. In our experiments, we obtain interventional data (D™, 7) by randomly selecting 10% of the
variables and clamping them to zero in the ground-truth data-generating process. The reported neg.

I-LL and I-MLL scores are the average of 10 different interventional data sets with |D™| = 100.

(E.4)

E.3 Hyperparameters

In all evaluations, DiBS is run for 3,000 iterations and uses the simple linear constraint schedule
Bi :=t. Att =0, the initial latent particles {Zo}}_; and parameter particles {©®¢ }}_, are initialized
by sampling from their prior distributions. For the step size schedule 7;, we use the adaptive learning
rate method RMSProp with learning rate 0.005. We always use 128 samples for Monte Carlo
estimation of the gradients. Finally, the bandwidths +., vy of the kernel in (15) and the slope of
a linear schedule «; are chosen in separate held-out instances of each setting in Section 6 and are
listed in Table 2. As illustrated by the application in Section 7, the provided hyperparameters can be
expected to apply to problem settings of comparable magnitude.

While the latent variable scale o, can in principle be set arbitrarily, we always set 0, = 1/ Vk
in the prior p(Z), which makes the norm in the SE kernel given in (15) roughly invariant with
respect to the latent dimension k, ignoring the acyclicity term. This follows from the fact that
|[u||? ~ Gamma(k/2,20?) when u; ~ N(0,02), in which case E[||u||?] = ko2.

Table 2: DiBS hyperparameter choices for a; and bandwidths +,, 7. Here, a denotes the slope in
the linear schedule oy := at.

Model d a o, Yo
0 2 2 -
BGe 50 2 50

20 02 5 500

50 0.02 15 1,000
20 0.02 5 1,000
50 0.01 15 2,000

Linear Gaussian

Nonlinear Gaussian

E.4 Baseline Methods

Structure MCMC (MC3, M-MC?, G-MC?) Designed for inference of the marginal posterior
p(G | D), structure MCMC [36, 37] performs sampling in the space of DAGs by adding, deleting, and
reversing one edge at a time without violating acyclicity. The acceptance probability of a proposed

graph G’ is given by
/ /
mm{ W(G)I-p(D|G")p (G)} (E.5)
TN(G)]-p(D] G )p(G)

where G is the current particle and A/ (G) is the collection of DAGs reachable from G with one edge
change. Following [37], the ratio of neighborhoods is approximated to equal one, which allows for
only computing N'(G') when accepting G’. We implement MC? using the efficient ancestor matrix
trick for finding acyclic proposals [37]. For marginal inference under the BGe marginal likelihood,
we compute the Bayes factor in (E.5) by only taking into account the affected node families.

For all of MC3, M-MC?, and G-MC3, we specify a burn-in period of 100k samples and then collect
a sample every 10k steps, which makes the run time of MC? and DiBS comparable. Both M-MC?
and G-MC3 use a simple Gaussian random walk proposal for the parameters, respectively, with scale
selected to roughly obtain an acceptance rate of 0.2 in each setting [63], when feasible in combination
with the graph proposal.
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Nonparametric DAG bootstrap (BPC, BGES, BPC*, BGES*) The nonparametric DAG boot-
strap [42] performs model averaging by bootstrapping the observations D to yield a collection of
synthetic data sets, each of which is used to learn a single graph, here using the GES and PC algo-
rithms [6, 7]. The collection of unique single graphs approximates the posterior by weighting each
graph by its unnormalized posterior probability in (2), analogous to DiBS+. The closed-form maxi-
mum likelihood parameter estimate for linear Gaussian BNs with known G, which is used by BPC*
and BGES* to allow approximating the joint posterior, is provided by Hauser and Bithlmann [57].
For joint posterior inference, BPC* and BGES* use p(G, ©, D) rather than p(G, D) for weighting
the inferred BN models.

Since the GES and PC algorithms only return essential graphs, i.e., MECs, we favor them in computing
the AUROC score. We orient a predicted undirected edge correctly when a ground truth edge exists
and only count a falsely predicted undirected edge as a single mistake. The held-out likelihood
metrics given in (19) are computed for a random consistent DAG extension of the essential graph
[64]. Enumerating the possibly exponential number of DAGs in an MEC is infeasible in general [65].
Implementations of the PC and GES algorithms are given by the CausalDiscoveryToolbox [66],
which is published under an MIT Licence and executes their commonly used R implementations.

E.5 Implementation and Computing Resources

The end-to-end nature of DiBS and SVGD allows for a highly efficient implementation using
vectorized operations, automatic differentiation, and just-in-time compilation. For this purpose, we
implement DiBS with JAX [67], which is published under an Apache Licence. In our experiments,
we did not use GPUs or distributed computation, though our implementation would directly allow for
it (e.g., by distributing and updating batches of SVGD particles across devices). Our code is publicly
available at: https://github.com/larslorch/dibs.

Table 3 summarizes the computing time of DiBS with CPUs for a superset of the evaluations on
BNs with Erdés-Rényi structures in Section 6. The computing time on BNs with scale-free graphs
is similar. In our experiments, we use Oracle BM. Standard .E2.64 machines (64 OCPUs, 512 GB
memory), where a single random restart is assigned between 1-4 OCPUs and 2-30 GB memory,
depending on the setting.

Table 3: Compute times of DiBS for the hyperparameters and resources described in Sections E.3
and E.5, respectively. Times are the mean + SD over 30 random restarts and are given in minutes. M
denotes the number of particles. BGe times are slower because the closed-form marginal likelihood
involves computing determinants [16, 17, 61].

Model M d=10 d =20 d =50

BGe 10 6.8+02 329+ 03 342.6 £12.3
30 195+03 1437+ 2.1 1,130.7 £ 56.1

Linear Gaussian 10 88£04 195+ 04 9.1+ 1.1
30 219+02 83.0+ 3.1 349.7 £ 20.3

Nonlinoar Gaussi 10 448E16 1418F 38 5246+ 13.0
oniinear aussian - 50 15894+ 87 475.1 +31.8 .
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F Results for Gaussian Bayesian networks with d = 50 variables
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Figure 5: Marginal posterior inference of linear Gaussian BNs with d = 50 variables using the BGe
marginal likelihood. The metrics are aggregated for 30 random BNs of each graph type. While DiBS
and DiBS+ are competitive in the structural E-SHD and AUROC metrics, we find that the baselines
specifically designed for marginal posterior inference perform favorably in the likelihood-based
metrics. We hypothesize that this is due to the high variance incurred by the score function estimator
that DiBS needs to use in the marginal inference setting under the BGe model (cf. Section 6.2).
To reach comparable results with DiBS in this high-dimensional setting, the DiBS score function
gradient estimator may require more than the default 128 Monte Carlo samples used here.
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Figure 6: Joint posterior inference of linear Gaussian BNs w1th d = 50 variables. The first and
second rows show the aggregate metrics for inference of 30 random BNs with Erd6s-Rényi and
scale-free structures, respectively. Analogous to inference for d = 20 variables, DiBS+ outperforms
all alternatives to joint posterior inference of the graph and the conditional distribution parameters
across the metrics.
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Figure 7: Joint posterior inference of nonlinear Gaussian BNs with d = 50 variables, where each
local conditional distribution is parameterized by a 2-layer neural network with five hidden nodes.
In this setting, the total number of conditional distribution parameters in a given BN amounts to
|®| = 13,050 weights and biases. The metrics are aggregated for inference of 30 random BN of
each graph type. Here, DiBS only infers 10 particles to make the computation time comparable to
M-MC? and G-MC3. As for posterior inference of BNs with d = 20 variables, DiBS and DiBS+

perform favorably compared to the MC? baselines.

G Additional Analyses and Ablation Studies

Having compared DiBS with several alternative approaches to Bayesian structure learning in Section
6, this supplementary section is devoted to a more in depth analysis of some of its properties. This is
done by changing, or leaving out single design aspects of the algorithm and studying the effect on the
previous metrics.

As in Section 6, DiBS and its instantiation with SVGD are used interchangeably here, and DiBS+
denotes the weighted mixture of particles. Since the metrics do not qualitatively differ between
inference of Erd6s-Rényi and scale-free BN structures in our experiments of Section 6, we only
consider the former here. Unless mentioned otherwise, the following experimental setup corresponds
to joint posterior inference of linear Gaussian BNs with d = 20 variables in Section 6.2.

G.1 Graph Embedding Representation

In Section 4.2, we propose to use a generative graph model p,, (G | Z) that is based on the inner
product of latent embeddings for each node. In particular, we choose p,(gij = 1|Z) = o4 (u] v;)
with latent variables Z = [U, V. In Figure 8, we contrast this modeling choice with the more trivial
variant po(¢9:; = 1|Z) = 04(2i;), where single scalars rather than inner products between latent
vectors encode the edge probabilities. Bengio et al. [68] and Ke et al. [31] use the scalar variant with
fixed oo = 1 in the context of causal inference.

E-SHD AUROC neg. LL neg. I-LL
3000 :
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Figure 8: Contrasting the bilinear graph model of Section 4.2 with its more trivial variant, where each
latent variable models the edge probabilities directly via the sigmoid. The plots aggregate the results
for joint inference of 30 randomly generated linear Gaussian BNs with d = 20 variables.
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Figure 9: DiBS for joint inference of linear Gaussian BNs with d = 20 variables for different sizes of
the latent variables Z € R?X4*¥Lower rank parameterizations of the matrix of edge probabilities
balance the tradeoff between computational efficiency and posterior approximation quality.

The comparison in Figure 8 illustrates that incorporating only the bilinear parameterization of edge
probabilities in the generative graph model improves performance by a significant margin. We
hypothesize that the coupling between edges results in smoother densities, which might be less prone
to local minima in gradient-based methods such as DiBS.

G.2 Graph Embedding Dimensionality

Another feature of the inner product representation of graphs is the ability to control the dimen-
sionality of the posterior inference task. As described in Section 5, we generally set k = d for the
latent variables Z € R2*4** that parameterize our graph model p,, (G | Z). This leaves the matrix
of edge probabilities fully expressible and without a rank constraint. In principle, however, the
formulation in (6) allows us to arbitrarily vary k. This creates a trade-off between the complexity of
the parameterization and the tractability and dimensionality challenges in approximate inference of
p(Z|D) or p(Z,® | D). Limiting k < d has connections to the theory of low-rank realizations of
sign matrices.

We perform inference with DiBS for k € {5, 7,10, 15,20}, leaving all other aspects of the algorithm
unchanged. Hence, the corresponding posterior over Z has {200, 280, 400, 600, 800} dimensions,
respectively. The results in Figure 9 suggest that lower values of £ = 15, or even k = 10, are already
able to achieve competitive performance across all metrics. Interestingly, the structural E-SHD metric
appears to suffer most from a small loss in complexity.

In this context, one should keep in mind that the bandwidth parameters ~y, and vy were set to achieve
good performance with k£ = d = 20. It is possible that lower values of k can reach performances that
are even closer to the full-rank variant of DiBS with alternative settings for v, and ~yy. In addition, a
lower-rank DiBS variant could be particularly promising for inference of very large BNs, where the
computational challenges of the full O(d?) latent representation might outweigh its benefits in terms
of expressibility.

E-SHD AUROC neg. LL
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Figure 10: Performance of DiBS and DiBS+ as a function the number of particle transport steps 7.
As previously, the plots aggregate the results for inference of 30 randomly generated linear 20-node
Gaussian BNs. The latent variable Z is specified with its default dimensions k = d = 20. After
already roughly 1,000 iterations, DiBS and DiBS+ obtain good posterior approximations.
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G.3 Particle Transport Iterations

Since DiBS uses Stein variational gradient descent [19] for posterior inference, our method iteratively
transports a set of latent graph particles, or latent graph and parameter tuples, for a number of 7" steps.
As the particles are randomly initialized, the approximation quality of SVGD particles (and thus
also DiBS particles) improves with the number of steps. We are interested in the degree to which a
small number of transport steps provide a good posterior approximation in the face of computational
constraints.

In Figure 10, we show the performance of DiBS as a function of the number of transport steps. We
find that even a smaller number of iterations achieves competitive results across the metrics. In
addition, the variance of performance in the predictive metrics neg. LL and neg. I-LL decreases
monotonically as a function of the performed transforms, whereas the variation in E-SHD remains
roughly the same.

G.4 Uncertainty Quantification Within a Markov Equivalence Class

When performing posterior inference of p(G | D) with the BGe marginal likelihood and a uniform
prior p(G), each Markov equivalent structure is assigned equal likelihood. This might be desirable
considering that causal edge directions are often not fully identifiable from purely observational data.
As DiBS infers a posterior over DAGs rather than MECs, we aim to validate the ability of DiBS to
correctly quantify the uncertainty present in nonidentifiable edge directions.

To this end, we consider a 4-node example Bayesian network, small enough to allow for the closed-
form computation of the ground-truth posterior by exhaustive enumeration of all possible DAGs.
This enables us to compute the true single and pairwise posterior edge marginals and contrast them
with the approximate posterior marginals inferred by DiBS. The graph structure for this analysis is
chosen to contain both an identifiable v-structure and a nonidentifiable edge pair. Figure 11 shows
the ground truth DAG G¢, its linear Gaussian parameters, and the observational model. In addition,
Figure 11 lists the essential graph Gy as well as the two other Markov equivalent DAGs G} and
G in the MEC represented by G-

We perform marginal posterior inference with DiBS using the experimental setup and hyperparameters
for 20-node linear Gaussian BNs. In this example setting, DiBS employs a uniform prior over graphs

p(zo) = N(20;0,1)
p(z1 | 20) = N (21; 220, 1)
p(z2 | o) = N (22; —220, 1)
) =N(

(:E3|£L'1,{E2 N$4,3$1+$2,1)

(G.1)

w @ s G

Figure 11: Four-node example linear Gaussian Bayesian network. Under the BGe marginal likelihood
and a uniform prior, G§, G7, and G3 are scored equally. While the v-structure z; — x3 = 3 is an
identifiable feature of the MEC of G} and thus present in Gy, the edge directions of £1 — g — 22
cannot be distinguished even given infinite observational data.
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Table 4: Ground truth and average inferred posterior marginals given N = 100 observations from the
ground truth model in Figure 11. Listed are the probabilities for the nonidentifiable edge structure
x1—x9— 2 (top) and the identifiable v-structure 1 — x3 < x2 (bottom). Averaged over 30
random particle initilizations, DiBS+ correctly quantifies the confidence and uncertainty in the
v-structure and nonidentifable edge pair, respectively.

DiBS DiBS+ Ground Truth

p(x1 = xo,x0 = 22|D) 0.134  0.216 0.298
p(z1 = xo, o < x2|D) 0201  0.037 0.052
p(z1 < 0,9 — 2| D) 0223 0.409 0.311
p(x1 < 20,20 + 22|D) 0.103  0.298 0.297
p(r1 — x3,x3 = 22| D) 0.157 0.013 0.017
p(r1 — x3,23 < 22|D) 0338 0.934 0914
p(xy < x3,23 = 22| D) 0275 0.034 0.043
p(l’l < T3,T3 < T2 D) 0.154 0.019 0.025

and uses the default £ = d = 4. Table 4 shows the ground truth and inferred pairwise edge marginals
under the posterior. We find that DiBS+ correctly infers both the uncertainty in the edge directions
of x1 — xy— x5 as well as the high confidence in the presence of the v-structure 1 — 3 < 2.
While the unweighted particles of DiBS do not exhibit false confidence in structures that are not
present in Gy, its inferred degree of uncertainty is too high compared to the ground truth. The
DiBS+ variant overcomes the inexact empirical average of DiBS by weighting the particles by their
unnormalized posterior probabilities.

H Experimental Details for Application to Protein Signaling Networks

The data by Sachs et al. [3] as well as the corresponding consensus graph used in Section 7 are taken
as provided by the CausalDiscoveryToolbox [66], which is published under an MIT Licence. We
standardize the data for inference. Because N is large, DiBS uses minibatches of 100 observations
to estimate the scores of the posterior. All hyperparameters and BN specifications are chosen by
default exactly as during the synthetic evaluation of linear and nonlinear Gaussian BNs in Table
2, respectively, except that DiBS correspondingly uses k = d = 11. For joint posterior inference
of linear Gaussian BNs, BPC* and BGES* still use the BGe marginal likelihood; since metrics are
very similar to BPC and BGES, their scores are not reported.

In line with inference on synthetic data in Section 6, the BGe marginal likelihood employed for the
experiments in Section 7 uses the default effective sample sizes o, = 1 and o, = d + 2 described in
Appendix E.1. Likewise, we again set the noise level for inference with the explicitly parameterized
linear and nonlinear Gaussian networks to 02 = 0.1.

Since the effective sample size a;, and the noise level 0% may affect the model complexity of the
inferred BN, e.g., the mean number of inferred edges in the DAG, we provide additional results
for alternative values of these Bayesian network model hyperparameters in Tables 5 and 6. Overall,
we find that increasing the effective sample size «,, does not significantly change metrics across the
considered methods. However, higher fixed noise levels o2 do result in less inferred edges, which
tends to lead to lower E-SHD but worse AUROC, i.e., less calibrated edge confidence scores. We
note that these are not free parameters of the inference methods that approximate the posterior, but
specifications of the inferred BN models themselves.
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Table 5: Additional results for marginal posterior inference of protein signaling pathways under the
BGe marginal likelihood of linear Gaussian BNs [16, 17]. Changing the effective sample size in the
BGe Normal-Wishart prior does not result in significantly different metrics compared to the default
o, = 1 used in all of our experiments. For o, = 10, DiBS and DiBS+ average an expected number
of 39.6 and 35.4 edges, respectively. Metrics are the mean =+ SD of 30 random restarts.

a, =10
E-SHD AUROC
MC3 343+04 0.622 4 0.020
BPC 25.5+£23 0.566 + 0.020
BGES 33.84+1.8 0.641 4-0.034
DiBS 37.9+£05 0.637 £ 0.046
DiBS+ 35.14+1.8 0.627 4-0.050

Table 6: Additional results for joint posterior inference of protein signaling pathways under explicitly
parameterized linear (top) and nonlinear (bottom) Gaussian BNs. The hyperparameter o2 specifies
the noise level underlying the inferred Bayesian networks. We find that higher noise levels o2 tend to
result in less edges. When inferring linear Gaussian BNs with 02 = 0.01 (02 = 1), DiBS averages
an expected number of 11.6 (8.8) edges, DiBS+ 13.8 (9.9) edges. For nonlinear Gaussian BNs with
0% = 0.01 (¢? = 1), DiBS averages 15.6 (5.2) edges, DiBS+ 17.5 (6.8) edges. Due to less false
positives, the E-SHD improves, but the degree of uncertainty in the presence of edges is quantified
less accurately, resulting in worse AUROC. Metrics are the mean £ SD of 30 random restarts.

0% =0.01 o2 =1
E-SHD AUROC E-SHD AUROC
M-MC® 381 +34 0.536+0082 33.1+34 0.543£0.105
G-MC?® 309430 0.51840.051 29.843.7 0.531+0.078
DiBS 23.0+05 0.595£0.069 203+04 0.601=£0.039
DiBS+ 229+2.0 0.540+0.048 20.0£14 0.569 £ 0.040

0?2 =0.01 o2 =1
E-SHD AUROC E-SHD AUROC
M-MC?® 38.7+32 0.555£0.101 184 +0.1 0.501 £0.043
G-MC® 349+36 0.5424+0.064 306425 0.538=+0.059
DiBS 243 +£06 0.5824+0.050 17.74+0.1 0.550 = 0.020
DiBS+ 249 +£29 0.5354+0.045 1854+0.5 0.530+0.028
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