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Abstract

Accurately estimating personalized treatment effects within a single study site has
been challenging due to small sample sizes. Here we propose a tree-based model
averaging approach to improve the estimation efficiency of conditional average
treatment effects concerning the population of a target research site by leveraging
models derived from potentially heterogeneous populations of other sites, but
without them sharing individual-participant data. To our best knowledge, there
is no established model averaging approach for distributed data with a focus on
improving the estimation of treatment effects. Under distributed data networks, we
develop an efficient and interpretable tree-based ensemble of personalized treatment
effect estimators to join results across study sites, while actively modeling for the
heterogeneity in data sources through site partitioning. The performance of this
approach is demonstrated by a study of the causal effects of oxygen therapy settings
on in-hospital mortality and backed up by comprehensive numerical results.

1 Introduction

Estimating individualized treatment effects, ranging from personalized medicine, policy research, to
customized marketing advertisement, has been a hot topic. Treatment effects of certain subgroups
within the population are often of interest. Recently, there has been an explosion of research devoted
to improving estimation and inference of covariate-specific treatment effects, or conditional average
treatment effects (CATE) at a target research site [1, 2, 3, 4, 5]. However, due to the limited
sample size in a single study, improving the accuracy of the estimation of treatment effects remains
challenging.

Leveraging data and models from various research sites to conduct statistical analyses is becoming
increasingly popular [6, 7, 8]. Distributed research networks have been established in many large
scale studies [9, 10, 11, 12]. A question often being asked is whether additional data or models
from other research sites could bring improvement to a local estimation task, especially when a
single site does not have enough data to achieve a desired power. This concern is most noticeable
in estimating treatment effects where sample size requirement is high yet observations are typically
limited. Also, the amount of data exchanged between data sites is restricted due to efficiency and
privacy concerns, hence prohibiting data from being pooled into a central location [13]. One way
to tackle this challenge is through model averaging [14], where multiple research sites collectively
contribute to the tasks of statistical modeling without sharing sensitive data. To our best knowledge,
there is no established model averaging approach and result for distributed data with the goal of
improving the estimation of CATE.
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Our paper focuses on improving the prediction efficiency of CATE (to be formally defined) concerning
a target site by leveraging models derived from other sites where populations and treatment effects
are potentially different compared to the target site, but without them sharing individual-level data.
To be specific, we consider two levels of potential heterogeneity in treatment effects. The first is
local heterogeneity where patients with different characteristics may have different treatment effects
within a hospital. It is also known as CATE, covariate-specific treatment effects, or heterogeneous
treatment effects. The second is site-level heterogeneity where the same patient may experience
different treatment effects at different hospitals that are driven by site-level confounding. We refer to
this distributed data network as heterogeneous data sources and details are discussed in Section 2.

In the paper, we propose a flexible tree-based weighting scheme to combine models from each site
that takes into account model heterogeneity, where the contribution of each model to the target site
depends on subject characteristics. Tree splitting may occur at both site level and subpopulation level,
resulting in a flexible information-sharing scheme that is site and feature-dependent. For example,
treatment effects in two hospitals may be similar for female patients but different for males, suggesting
us to consider borrowing information across sites only on selective subgroups, i.e., females. This
is a more data-adaptive weighting scheme than the global weighting schemes used in classic model
averaging [15, 16, 17].

The key contributions of this paper are summarized as follows. (i) We propose a model averaging
scheme that is adaptive to both model heterogeneity and subject features via tree-splitting. (ii) We
generalize model averaging techniques to the field of causal inference. Causal assumptions with
practical implications are explored to warrant the use of our approach. (iii) Compared to other data
distributed learning methods, the proposed framework ensures the privacy of individual-participant
data, facilitating practical collaboration research within distributed research networks.

2 Model Averaging and Related Works

Data integration approaches have received wide attention in recent years partly due to the increasing
availability of distributed research networks [9, 10, 11, 12]. There are two main types of construct of
a distributed database [18]: homogeneous versus heterogeneous. For homogeneous data sources, data
across sites are random samples of the global population. Recent works [19, 20, 21, 22, 23, 24] all
assume samples are randomly partitioned, which guarantees identical data distribution across sites.
The goal of these works is to improve the overall estimation by averaging results from homogeneous
sample divisions.

In practice, however, there is too much site-level heterogeneity in a distributed data network to
warrant direct aggregation of models obtained from local sites. The focus shifts to improving the
estimation of a target site by selectively leveraging information from other data sources. There
are two main classes of approaches. The first class [25, 26, 27] is based on comparison of the
learned model parameters {θ̂1, . . . , θ̂K} from K different sites where for site k we adopt model
fk(x) = f(x;θk) with subject features x to approximate the outcome of interest Y . Clustering
and shrinkage approaches are then used by merging data or models that are similar. Most of these
require the pooling of individual-participant data. The second class of approaches falls in the model
averaging framework [14] with weights directly associated with the local prediction. Let site 1 be
our target site, and the goal is to improve f1 using a weighted estimator f∗(x) =

∑K
k=1 ωkfk(x),

where ωk =
exp{−

∑
i∈I1

(fk(xi)−yi)2}∑K
`=1 exp{−

∑
i∈I1

(f`(xi)−yi)2}
, with Yi the observed outcome of subject i in I1 (the

index set of site 1) and ωk the weights proportional to the prediction performance of fk on site 1
(e.g., residual sum of squares), and

∑
k ωk = 1. The above is termed exponential weighted model

averaging (EWMA), one of the classic model averaging approaches. Several variations of ωk can be
found in [15, 16, 17]. In general, separate samples are used to obtain the estimates of ωk’s and fk’s,
respectively.

In causal inference, there is a lot of interest in identifying subgroups with enhanced treatment effects,
targeting at the feasibility of customizing estimates for individuals [1, 2, 3, 4, 5]. These methods
aim to estimate the CATE function τ(x), denoting the difference in potential outcomes between
treatment and control, conditional on subject characteristics x. To reduce uncertainty in estimation of
personalized treatment effects, incorporating additional data or models are sough after [28]. There is
some recent progress on bridging the findings from an experimental study with observational data
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[29, 30, 31]. However, their methods require fully centralized data. In contrast, we leverage the
distributed nature of model averaging to derive an integrative CATE estimator. In this paper, we
propose a tree-based model averaging framework, designed to improve treatment effect estimation
for subgroups within a target site. We assume a heterogeneously distributed data network as this is
the more common yet challenging case in practice. The extension is non-trivial because the output of
CATE is unobserved in nature, as compared to a standard f(x) whose output Y is readily available.
Our model averaging weights not only depend on sites, but also on the subject characteristics.

3 A Tree-based Model Averaging Framework

3.1 Notations and Definitions

We first introduce notations related to our goal of conditional average treatment effect (CATE)
estimation. Let Y denote the outcome of interest, Z ∈ {0, 1} denote a binary treatment indicator,
andX denote subject features. Correspondingly, let y, z and x denote their realizations. Using the
potential outcome framework [32, 33], we define CATE as τ(x) = E[Y (Z=1) − Y (Z=0)|X = x],
where Y (Z=1) and Y (Z=0) are the counterfactual outcomes under treated Z = 1 and control Z = 0,
respectively. In other words, it is the expected difference of the potential outcomes between two
treatment groups for individuals with characteristicsX . By the causal consistency assumption, the
observed outcome is Y = Y Z = ZY Z=1 + (1− Z)Y Z=0.

Suppose the distributed data network D := {Dk}Kk=1 consists of K sites, each of which has a sample
size of nk. We consider for site k the data setup Dk = {yi, zi,xi}i∈Ik , where Ik is the index set of
site k. The CATE function is hence given by τk(x) = Ek[Y

(Z=1) − Y (Z=0)|X = x], where the
expectation is taken over the data distribution in site k. Without loss of generality, we assume the
goal is to estimate the CATE function in site 1, τ1.

3.2 Assumptions

To ensure information can be properly borrowed across sites without introducing additional bias, we
first impose the following idealistic assumptions, and then discuss relaxations of Assumption 2.

Assumption 1: {Y (Z=0), Y (Z=1)} ⊥ Z|X, S.

Assumption 2: {Y (Z=0), Y (Z=1)} ⊥ S|X .

Assumption 3: 0 < P (S = 1|X) < 1 and 0 < P (Z = 1|X, S) < 1 for allX and S.

Here S is the site indicator taking values in S = {1, . . . ,K} such that Si = k if i ∈ Ik. Assumption
1 ensures treatment effects are unconfounded within sites so that τk(x) can be identified. This
assumption holds by design when data are collected from randomized controlled trials or when
treatment assignment depends only on a subset of X . CATE can then be consistently estimated
with data in each site, i.e., τk(x) = Ek[Y

(Z=1) − Y (Z=0)|X = x] = E[Y |X = x, S = k, Z =
1] − E[Y |X = x, S = k, Z = 0]. The second equality directly results from the assumption.
Assumption 2 essentially states that the CATE functions are transportable, i.e., τk(x) = τk′(x) for
k, k′ ∈ {1, . . . ,K}. See also in [34] and [35] for similar consideration. This assumption may not be
satisfied due to site level heterogeneity across sites. In other words, site can be a confounder which
prevents transporting of CATE functions across sites. Our method allows Assumption 2 to be violated
and use model averaging weights to determine transportability. In a special case in Section 4, we
consider the assumption to hold for a subset of sites that contains site 1, i.e., {Y (Z=0), Y (Z=1)} ⊥
S1|X , where S1 takes values in S1 = {k : τk(x) = τ1(x)} and {1} ⊂ S1 ⊂ S. We denote S1 as
the set of transportable sites with regard to site 1. Hence, transportability holds across some sites and
some patient types. When the above assumption fails to hold and S1 = {1}, bias may be introduced
to site 1 by model averaging. However, our approach is still able to exploits the bias and variance
trade off to improve prediction. Assumption 3 ensures that all subjects are possible to be observed in
site 1 and all subjects in all sites are possible to receive either arm of treatment.
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3.3 Tree-based Adaptive Model Averaging

A two-stage model averaging approach is proposed. We first split the data in the target site (site 1) into
a training set and an estimation set. (i) Local stage: Obtain the estimated CATE function τ̂1 from the
training set in site 1. Other sites locally obtain {τ̂k}Kk=2. These K local models are then passed to site
1 to get K predicted treatment effects for each subject in the estimation set in site 1, resulting in an
augmented data set. (ii) Ensemble stage: A tree-based ensemble model is trained on the augmented
data by either an ensemble regression tree (ET) or an ensemble random forest (EF), with the predicted
treatment effects from the previous stage as the outcome. The site indicator of which local model
is used as well as the subject characteristics are fed into the ensemble model as predictors. The
resulting model will be used to compute our proposed model averaging estimator. Figure 1 illustrates
a conceptual diagram of the proposed model averaging framework and structure of the augmented
data. Algorithm 1 provides an algorithmic overview. Our method has been implemented as an R
package ifedtree available on GitHub (github.com/ellenxtan/ifedtree, see A.4).

Heterogeneous 
data sources 

I Site 1 (train) I 
I Site 21 T 

2 T 
1 

I site 31 r3\ i
� Site 1 

---::>-1
Augmented 
site 1 data 

ET or EF

(a)
(b)

Figure 1: (a) Schema of the proposed algorithm. (b) Illustration of the augmented data constructed
from the estimation set of site 1.

Algorithm 1 Tree-based model averaging for heterogeneous data sources

1: for k ← 1, 2, . . . to K do . Loop through K sites. Can be run in parallel.
2: Build a local model using site k data. Site 1 model uses its training set only.
3: for i ∈ I(2)1 do . Loop through subjects in site 1 estimation set.
4: for k ← 1, 2, . . . to K do . Loop through K local models.
5: Predict τ̂k(xi) using local model k.
6: Di,k ← [xi, k, τ̂k(xi)].
7: Create augmented site 1 data Daug,1 by concatenating Di,k vectors.
8: T̂EF(x, s)← ENSEMBLEFOREST(Daug,1) . Or ENSEMBLETREE when B = 1.

We consider an adaptive weighting of {τ1, . . . , τK} by

τ∗(x) =
∑K
k=1 ωk(x)τk(x) (1)

where τ∗ is the weighted model averaging estimator. The weight functions ωk(x)’s are not only
site-specific, but also depend on x, and follow

∑K
k=1 ωk(x) = 1. It measures the importance of τk

in assisting site 1 when subjects with characteristics x is of interest. We rely on each of the sites to
derive their respective τ̂k from Dk so that D1, . . . ,DK do not need to be pooled. Only the estimated
functions {τ̂2, . . . , τ̂K} are passed to site 1. Site 1 also estimates its own τ̂1 using half of the samples
inD1, whose indices belong to i ∈ I(1)1 , the training set. We describe the approaches to estimate τ̂k in
Section 3.4. The weight functions are then estimated using the remaining samples in D1, denoted as
i ∈ I(2)1 , the estimation set. Unlike in classic model averaging where Y is observed, since treatment
effects are not directly observed, weights are estimated based on expected treatment effects.

A tree-based ensemble is constructed to estimate the weighting functions {ωk}Kk=1. Heterogeneity
across sites is explained by including the site index into an augmented training set when building trees.
An intuition of our approach is that sites that are split away from site 1 (by tree nodes) are ignored and
the sites that fall into the same leaf node are considered homogeneous to site 1 hence contribute to the
estimation of τ1(x). A splitting by site may occur in any branches of a tree, resulting in an information
sharing scheme across sites that is dependent on x. We construct the ensemble by first creating an
augmented data set for subjects in I(2)1 , the estimation set where Daug,1 = {xi, k, τ̂k(xi)}i∈I(2)1 ,k∈S .
The illustration of this augmented site 1 data is given in Figure 1b. An ensemble is then trained on
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this data by either a regression tree or a random forest, with the estimated treatment effects τ̂k(xi)
as the outcome, and a categorical site indicator of which local model is used along with all patient
features as predictors, i.e., (xi, k). We denote the resulting function as T (x, s) which depends on
both x and site s, specifically, TET(x, s) and TEF(x, s) for ensemble tree (ET) and ensemble forest
(EF), respectively. Let L(x, s) denote the final partition of the feature space by the tree to which the
pair (x, s) belongs. The ET estimate based on the augmented site 1 data can be derived by

T̂ET(x, s) =
1

|{(i,k):(xi,k)∈L(x,s)}
i∈I(2)

1 ,k∈S
|∑

{(i,k):(xi,k)∈L(x,s)}
i∈I(2)

1 ,k∈S

τ̂k(xi)

=
∑
i∈I(2)1

∑K
k=1

1{(xi,k)∈L(x,s)}
|L(x,s)| τ̂k(xi).

(2)

Intuitively, observations with similar characteristics (x and x′) and from similar sites (s and s′)
are more likely to fall in the same partition region in the ensemble tree, i.e., (x, s) ∈ L(x′, s′)
or (x′, s′) ∈ L(x, s). This resembles a non-smooth kernel where weights are 1/|L(x, s)| for
observations that are within the neighborhood of (x, s), and 0 otherwise. The estimator borrows
information from neighbors in the space ofX and S. The splits of the tree are based on minimizing
in-sample MSE of τ̂ within each leaf and pruned by cross-validation over choices of the complexity
parameter. Since a single tree is prone to be unstable, in practice, we use random forest to reduce
variance and smooth the partitioning boundaries. By aggregating B ET estimates each based on a
subsample of the augmented data, {T̂ (b)}Bb=1, an EF estimate can be constructed by

T̂EF(x, s) =
1
B

∑B
b=1 T̂ (b)(x, s)

=
∑
i∈I(2)1

∑K
k=1 λi,k(x, s)τ̂k(xi), (3)

where λi,k(x, s) = 1
B

∑B
b=1

1{(xi,k)∈Lb(x,s)}
|Lb(x,s)| .

The form of T̂ (b)(x, s) closely follows (2) but is based on a subsample of Daug,1. The weights,
λi,k(x, s), are similar to that in (2), and can be viewed as kernel weighting that defines an adaptive
neighborhood of x and s. Each site can contribute partial information but not all or none. We then
obtain the model averaging estimates defined in (1) by fixing s = 1 such that τ̂∗ET(x) = T̂ET(x, s = 1)

or τ̂∗EF(x) = T̂EF(x, s = 1). The weight functions {ωk(x)}Kk=1 for τ̂∗(x) can be immediately
obtained from the ET or EF by

τ̂∗ET(x) = T̂ET(x, 1) =
∑K
k=1 ω̂k(x)τ̂k(x),

where ω̂k(x) =
∑
i∈I(2)1

1{(xi,k)∈L(x,1)}
|L(x,1)| ;

τ̂∗EF(x) = T̂EF(x, 1) =
∑K
k=1 ω̂k(x)τ̂k(x),

where ω̂k(x) =
∑
i∈I(2)1

λi,k(x, 1).

It can be verified that
∑K
k=1 ω̂k(x) = 1 for all x. As our simulations in Section 4 show, τ̂∗ improves

the local functional estimate τ̂1. We set B = 2000 throughout the paper. Tree and forest estimates
are obtained by R packages rpart and grf, respectively.

3.4 Local Models: obtaining τ̂k

Estimate of τk(x) at each local site must be obtained separately before the ensemble. Our proposed
ensemble framework can be applied to a general estimator of τk(x). For each site, the local estimate
could be obtained using different methods. Recently, there has been many work dedicated to the
estimation of individualized treatment effects [1, 2, 3, 4, 5]. As an example, we consider using the
causal tree (CT) [1] to estimate the local model at each site. CT is a non-linear learner that enjoys
the following convenience: (i) allows different types of outcome such as discrete and continuous
outcomes, hence can be applied to a broad range of real data scenarios; (ii) can easily handle a
large number of features and high order interactions by construction; (iii) can be applied to both
experimental studies and observational studies. See [1] for a detailed description. CT is implemented
in the R package causalTree. We explore other estimating options for local models in Appendix A.2.
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3.5 Asymptotic Properties

We provide the consistency guarantee of the proposed estimator T̂EF for the true target τ1. Assuming
a consistent local estimator, the EF with subsampling procedure described in Appendix A.1 is
consistent.

Theorem 1 Suppose the subsamples used to build each tree in an ensemble forest are drawn from
different subjects in the augmented site 1 data. Under the following conditions:

(i) Bounded covariates: FeaturesXi and the site indicator Si are independent and have a density
that is bounded away from 0 and infinity.

(ii) Lipschitz response: the conditional mean function E[T |X = x, S = k] is Lipschitz-continuous.

(iii) Honest trees: trees in the random forest use different data for placing splits and estimating
leaf-wise responses.

Then T̂EF(x, s)
p→ τs(x), for all x and s, as mink nk →∞. Hence, τ̂∗EF(x)

p→ τ1(x).

The detailed description of the conditions and the proof of Theorem 1 is presented in Appendix A.1.
With finite sample, bias will always be introduced from the local models, leading to biased model
averaging estimates. To better explore the consistency properties of our proposed methods, we add
in Section 4 enhanced versions of ET and EF estimators, denoted as ET-cate and EF-cate, which
apply ground truth when building the augmented site 1 data so that τ̂k in (2) and (3) is replaced by
τk. This removes the bias and uncertainty in local model estimation so that bias and uncertainty
only results from the estimation of the ensemble model. Empirical results show that ET-cate and
EF-cate achieve minimal bias and variance. In other words, the extra bias and uncertainty introduced
by model averaging is small.

4 Simulation Study
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Figure 2: Tree-based model averaging results under discrete grouping (a,b,c) and continuous
grouping (d,e,f) when c = 1. (a) and (d) visualize the fitted ETs where the site indicator and X1

appear as splitting variables. (b) and (e) show the predicted treatment effects of EFs for different
values of X1 in each site, marginalized over all other features. (b) is arranged according to the true
grouping, odd sites versus even sites. (c) and (f) plot the model averaging weights in EFs by varying
X1. Corresponding ET and EF show consistent patterns and recover the true grouping.

Monte Carlo simulations are conducted to assess the proposed methods. We specify m(x, k) as
the conditional mean of outcome and τ(x, k) as the conditional treatment effect for individuals
with features x in site k. The marginal treatment probability is P = 0.5. The potential outcomes
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can be written as Y (z)
i = m(Xi, Si) +

1
2 · (2z − 1) · τ(Xi, Si) + εi. The mean function is

m(x, k) = 1
2x1 +

∑4
d=2 xd + (x1 − 3) · c · Uk, and the CATE function is specified as

τ(x, k) = 1{x1 > 0} · x1 + (x1 − 3) · c · Uk,
where z = 0, 1, Uk denotes the site-level heterogeneity, and εi ∼ N(0, 1). Features Xi ∈ R5 are
independent of εi, and Xi ∼ N(0, I). The simulation setting within each site (with k fixed) is
motivated by designs in [1]. Features in τ are predictive markers while those in m but not in τ are
prognostic only. Features that do not affect outcomes are noise covariates. The data are generated
under a distributed data networks where heterogeneity may exist across sites. We assume there are
K = 20 sites in total, each with a sample size n = 500. Two scenarios for site-level heterogeneity Uk
are considered. For discrete grouping, we assume there are two underlying groups among theK sites
Uk ∼ Bernoulli(0.5). Specifically, we assume odd-index sites and even-index sites form two distinct
groups G1 = {k : k mod 2 = 1} = {1, 3, . . . ,K − 1}; G2 = {k : k mod 2 = 0} = {2, 4 . . . ,K}
such that Uk∈G1 = 0 and Uk∈G2 = 1. The case of continuous grouping is considered as well
where we assume Uk ∼ Unif [0, 1]. Sites from similar underlying groupings have similar treatment
effects and mean effects, while sites from different underlying groupings have different treatment
effects and mean effects. We test different scales of the site-level heterogeneity under the discrete
grouping and continuous grouping cases, respectively, with the scale factor denoted as c, taking
values in c ∈ {0, 0.6, 1, 2}. A scale c = 0 implies all data sources are homogeneous. In other words,
Assumption 2 is satisfied when c = 0 but not when c > 0.

The proposed approaches (ET and EF) are compared with several competing methods. The hypotheti-
cal cases when the ground truth τk’s are used when constructing model averaging weights are denoted
as ET-cate and EF-cate. We compare with the local estimator CT which does not utilize external
information, denoted as LOC. A naive model averaging method is compared, denoted as MA, with
weights ωMA

k = 1/k. This approach assumes models are homogeneous. We also consider a modified
version of EWMA that can be used for CATE. Under our setting, the target outcome τ is unobserved.
We obtain an approximation of τ1(x) by fitting another local model using the estimation set of site
1, denoted by τ̃1(x). Essentially, we would like to measure weights that could provide information
about the relative degree of similarity between sites so that CATE models closer to site 1 could be

borrowed. Its weights are given by ωEWMA
k =

exp{−
∑

i∈I(2)
1

(τ̂k(xi)−τ̃1(xi))
2}∑K

`=1 exp{−
∑

i∈I(2)
1

(τ̂`(xi)−τ̃1(xi))2}
. Moreover, we

consider the commonly used stacking approach, denoted as STACK, an ensemble method in machine
learning that combines predictions of several models. Specifically, we adopt linear stacking, which
posits a linear regression of the outcome of interest on the predicted values of multiple models and
obtains coefficients (or so-called “weights”) of contribution of each model. To our end, we regress
τ̃1(x) on the predictions of the estimation set in site 1 from each local model, {τ̂1(x), . . . , τ̂k(x)}.
The stacking weights are not probabilistic hence not directly interpretable. We report the empirical
bias and MSE of these methods over an independent testing set of sample size nte = 2000 from site
1 where Bias(τ̂) = 1

nte

∑nte

i=1{τ̂(xi)− τ1(xi)} and MSE(τ̂) = 1
nte

∑nte

i=1{τ̂(xi)− τ1(xi)}2. Each
simulation scenario is repeated for 1000 times. More information on the simulation code is provided
in Appendix A.4. Experiments are performed on a 6-core Intel Xeon CPU E5-2620 v3 2.40GHz
equipped with 64GB RAM.

Figure 2 visualizes the proposed tree-based model averaging approaches ET and EF, which use a
data-adaptive weighting scheme depending on both model heterogeneity and subject features via
tree-splitting. In the individual trees (a) and (d), the site indicator and X1 appear as splitting variables,
which is consistent with the data generation process. Our estimated treatment effect (b) and (e)
recover the pattern of heterogeneity and homogeneity across sites and the range of X1. Model 1 has
a relatively larger contribution to the weighted estimator while models from other sites may have
different contributions at different values of X1. Figure 3 presents the box plots based on repeated
experiments. Each series of boxes corresponds to a different strength of site-level heterogeneity c.
Our proposed estimators ET and EF show the best performance in terms of the mean and variation of
MSE among other estimators. Tree and forest have similar MSE due to the fact that the true model
is relatively simple to be captured under the given sample size and hence can be already accurately
approximated by a single ensemble tree. EF is preferable in practice for better stability. Also note
that ET-cate and EF-cate achieve close-to-zero MSE with very small spreads. This is the case when
the uncertainty in local model estimation is ignored. Results show that the uncertainty introduced by
model averaging is small. Figure 4 shows the ratio of MSE in EF over MSE in LOC as a measure of
accuracy gain resulting from model averaging, varying n (100, 500, 1000). As sample size increases,
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model averaging becomes more powerful due to better estimation of τk, and is more pronounced
under continuous grouping when c is small. A full comparison among estimators that utilize the
ground truth, including EWMA and stacking with weights built on the true τk’s, is provided in
Appendix A.2. Therein, we also explore performance under various sample sizes in local sites as
well as different estimating options for local models. Similar patterns are shown and our approach
enjoys robust performance.
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Figure 3: Box plots of the MSE of multiple CATE estimators for (a) discrete grouping and (b)
continuous grouping across site, varying scale of site-level heterogeneity. The proposed methods
ET and EF achieve competitive performance compared to standard model averaging or ensemble
methods in all settings. Note that ET-cate and EF-cate achieve close-to-zero MSE with very small
spreads in some settings.
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Figure 4: Ratio of MSE between EF and LOC.

5 Data Application: a Distributed Multi-Hospital Data Network

We apply the proposed EF-based model averaging estimator to evaluate the effect of oxygen therapy
settings on in-hospital mortality among critically ill patients with respiratory diseases and with at
least 48-hour of oxygen therapy. The data of this study are obtained from the eICU Collaborative
Research Database (eICU-CRD), a multi-hospital database made available by Philips Healthcare [36].
A recent retrospective study found that the lowest mortality was observed when SpO2 is in the range
of 94-98% among patients requiring oxygen therapy [37]. We consider SpO2 within this range as the
treatment arm (Z = 1) and SpO2 outside of this range as the control arm (Z = 0). The final analysis
cohort consists of 7,022 patients from 20 hospitals, each with at least 50 patients in each treatment
arm. The treatment effects of a randomly selected hospital (hospital site 1) is of interest, and we aim
to adopt our proposed estimator to enhance the treatment effect estimation combining models of data
from other hospitals. Hospital-level summary information is provided in Appendix A.3. We include
the same five covariates as in [37], which are age, body mass index (BMI), sex, Sequential Organ
Failure Assessment (SOFA) score, and duration of oxygen therapy. The outcome is the indicator of
in-hospital mortality, i.e. Y = 1 is death in hospital and Y = 0 otherwise.
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Figure 5: Application to estimating treatment effects of oxygen therapy on hospital mortality using
EF. (a) Variable importance plot in the ensemble forest. The site indicator appears to be the most
important variable with the relative importance taking up about 50%, followed by oxygen therapy
duration and BMI. (b) Partial dependence plot of estimated treatment effects varying duration and
BMI while holding the other covariates constant. (c) Visualization of data-adaptive weights in EF
varying duration and site indicator, and varying BMI and site indicator, respectively. The weights
of model 1 is stable while models from other sites may have different contributions to the weighted
estimator for different values of duration.

Figure 5 visualizes the results of the EF estimated effect of oxygen therapy setting on in-hospital
mortality. CT is used as the local model. Subfigure 5a shows the variable importance plot of the fitted
EF. The site indicator appears to be most important, explaining about 50% of the decrease in training
error. Subfigure 5b shows partial dependence plots of the estimated treatment effects as a function of
the two other important features oxygen therapy duration and BMI adjusting for other covariates. A
negative treatment effect corresponds to an improvement in survival. Patients of a BMI between 40
and 50, and an oxygen therapy duration about 230 show the most benefit from oxygen therapy at
the SpO2 94-98% range with a lower hospital mortality. Patients with a BMI lower than 30 and a
duration greater than 330 do not have a large differential treatment effect. Subfigure 5c visualizes our
proposed model averaging scheme with data-adaptive weights ωk(x) in the fitted EF with respect to
oxygen therapy duration for different models, respectively, while holding other covariates constant.
The weights of model 1 are quite stable while models from other sites may have different contribution
to the weighted estimator for different values of duration. We also provide for comparison a fitted
local model for hospital 1 using CT in Appendix A.3. It shares similar patterns as that in Figure 5b
while the estimated treatment effect may differ.

In this distributed research network, different hospitals have a different sample size nk. Those with
a smaller sample size may not be representative of their population, leading to an uneven level of
precision for local causal estimates. For sensitivity analysis, we consider a weighting strategy to
adjust for the sample size of site k. Results show similar patterns as in Figure 5. Detailed results are
provided in Appendix A.3. The data access and replication code are provided in Appendix A.4.

6 Discussion

In this paper, we have proposed an efficient and interpretable tree-based model averaging framework
for enhancing the estimation of treatment effects for subgroups within a target site by borrowing
information from data sources that are potentially heterogeneous. We generalize the standard model
averaging scheme so that it is data-adaptive in a sense that the generated weights depend on baseline
features. This work contributes to facilitating multi-site collaborations within a distributed research
network by providing an analytical framework to leverage models from sites, avoiding the need to
pool individual-participant data. Such kind of distributed data scheme is increasingly common in
the era of Big Data and we hope to highlight the importance of accounting for data heterogeneity
through this work. We break free of traditional thinking of viewing data integration as being a binary
(yes/no) decision. Instead, the proposed approaches explore the similarity and dissimilarity of the
target treatment effect between sites to yield an optimal information-sharing scheme for selectively
improving the estimation of treatment effect of interest. We also stress that despite the function of
interest in this paper being the CATEs, our approach extends beyond causal inference to a general
f(x) which may be of interest in other research problems where data are heterogeneous.
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A Appendix
A.1 provides the proof of the consistency of the proposed model averaging estimator stated in

Section 3.5.
A.2 provides details on the simulation results in Section 4 varying sample sizes and local models.
A.3 provides sensitivity analysis for the real-data application in Section 5.
A.4 provides details on the access to the application data and the replication code.

A.1 Proof of Theorem 1

The proof of Theorem 1 closely follows arguments given in [2]. Suppose the subsamples for building
each tree in an ensemble forest are drawn from different subjects in the augmented site 1 data.
Specifically, in one round of EF, we draw m samples from the augmented data, where m is less than
the rows in the augmented data, i.e., m < (n1 ·K). By randomly picking m unique subjects from
site 1 and then randomly picking a site indicator k out of K sites for each of the m subjects. The
resultedm subsamples should not be from the same subject and are hence independent and identically
distributed. As long as s < n1, we can ensure that all the subsamples are independent. In practice,
when the ratio of n1/K is relatively large, the probability of obtaining samples from the same subject
is small.

Assume that subject features Xi and the site indicator Si are independent and have a density
that is bounded away from 0 and infinity. Suppose moreover that the conditional mean function
E[T |X = x, S = k] is Lipschitz continuous. We adopt the honesty definition in [1] when building
trees in a random forest. Honest approaches separate the training sample into two halves, one half
for building the tree model, and another half for estimating treatment effects within the leaves [1].
Following Definitions 1-5 and Theorem 3.1 in [2], the proposed estimator T̂EF(x, s) is a consistent
estimator of the true treatment effect function τs(x) for any site s.

A.2 Full Simulation Results

Similar to ET-cate and EF-cate whose weights are built on the ground truth CATE functions τk’s, we
also consider for EWMA and STACK under a similar hypothetical setting. Specifically, we assume
the true τ1 is known and use it to compute the weights. This version of EWMA estimator is denoted as

EWMA-cate and its weight is given by ωEWMA-cate
k =

exp{−
∑

i∈I(2)
1

(τ̂k(xi)−τ1(xi))
2}∑K

`=1 exp{−
∑

i∈I(2)
1

(τ̂`(xi)−τ1(xi))2}
. Similarly,

the corresponding linear stacking approach, denoted as STACK-cate, regresses the ground truth τ1(x)
on the predictions of the estimation set in site 1 from each local model, {τ̂1(x), . . . , τ̂k(x)}.
We compare the proposed model averaging estimators with the local estimator, MA, two versions
of modified EWMA, as well as two versions of the linear stacking approach. Using CT as the
local model, we present simulation results varying the sample size at local sites. The number of
replications is 1000 throughout. Figure 6 presents the box plots based on 1000 simulated datasets.
Each series of boxes corresponds to a different strength of site-level heterogeneity c. Table 1 reports
the ratio between MSE of the estimator and MSE of the local model in terms of average and standard
deviation of MSE, respectively, over 1000 replicates. Our proposed estimators ET and EF shows the
best performance overall in terms of the mean and variation of MSE among the estimators without
using the information of ground truth τ1(x). Comparing with ET, EF has a slightly smaller MSE
when c is large, which is expected because forest models tend to be more stable and accurate than a
single tree. ET-cate achieves minimal MSE for low and moderate degrees of heterogeneity while
EF-cate has the minimal MSE under all settings. The local estimator (LOC) in general shows the
largest MSE compared to other estimators, as it does not leverage information from other sites. By
borrowing information from additional sites, variances are greatly reduced, resulting in a small MSE
of ensemble estimators. MA that naively adopts the inverse of sample size as weights performs well
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under low levels of heterogeneity, but suffers from a huge MSE with large variation as c increases.
EWMA estimators perform slightly better and are more stable than LOC and MA. EWMA-cate
has better performance than EWMA in all settings as the information of true CATE is used for
weight construction. STACK estimators performs better than EWMA estimators. Similarly, STACK-
cate performs better than STACK in all settings. STACK-cate, with ground truth τ1(x) available,
outperforms ET and EF when there exists a moderate to high level of heterogeneity across sites.

Figure 7 and Figure 8 show box plots of simulation results with a sample size of 100 and 1000,
respectively, at each site. Our proposed methods ET and EF show robust performance in all settings.
ET-cate and EF-cate achieve close-to-zero MSE with very small spreads in some settings. Figure 9
shows plots of the bias and MSE of EF-cate varying sample size at each site (n = 100, 500, 1000).
As the sample size increases, both bias and MSE of EF-cate reduce to zero. Consistency of EF-cate
can be shown via simulation when perfect estimates are obtained from local models. Meanwhile, our
proposed method greatly reduce MSE by selectively borrowing information from multiple sites.

We explore another option for the local model using the causal forest (CF) [2] varying the sample size
at local sites. A causal forest is a stochastic averaging of multiple causal trees [1], and hence is more
powerful in estimating treatment effects. In each tree of the causal forest, MSE of treatment effect is
used to select the feature and cutoff point in each split [2]. CF is implemented in the R packages grf.
Figure 10, Figure 11, and Figure 12 show box plots of simulation results with a sample size of 100,
500, and 1000, respectively, at each site. Our proposed methods ET and EF show robust performance
in all settings regardless of the use of information of the ground truth τ1(x).

A.3 Additional Results for Data Application

Figure 13 plots a local CT fitted with data in hospital 1. Overall there is a similar pattern as in
Figure 5b. Subjects with an oxygen therapy duration smaller than about 330 and a BMI smaller than
about 30 do not have a large differential treatment effect.

In real-life applications, hospitals may have different sample sizes nk that may affect the accuracy
of the estimation of τk. Table 2 shows hospital-level information for the 20 hospitals where the
number of patients across sites varies. Information includes the region of the U.S. where the hospital
is located, whether it is a teaching hospital, the bed capacity, and the number of patients within the
hospital.

Hospitals with a smaller sample size may not be representative of the population, leading to an
uneven level of precision for local causal estimates. To account for different sample sizes at each
hospital, we consider a basic weighting strategy where we add weights to each observation τ̂k(x)
in the augmented site 1 data adjusting for the sample size of site k. The weights are defined as
ηk(x) =

Knk∑K
j=1 nj

.

Figure 14 visualizes the results of oxygen therapy on hospital mortality with the basic weighting
strategy adopted. The site indicator appears to be most important with a relative importance taking
up about 48%, indicating there may exist moderate to high degree of heterogeneity across sites.
Two of other important variables are oxygen therapy duration and BMI, taking up about 16% and
13%, respectively. Subfigure 14b shows partial dependence plots of estimated treatment effects
as a function of the two most important features oxygen therapy duration and BMI adjusting for
other covariates. Similar patterns are observed as in Subfigure 5b where patients of a BMI between
40 and 50, and an oxygen therapy duration about 230 shows a benefit from the oxygen therapy at
the SpO2 94-98% range with a lower hospital mortality. Patients with a BMI lower than 26 and a
duration greater than 350 did not benefit much from the oxygen therapy. Subfigure 14c visualizes
our proposed model averaging scheme depending on features with data-adaptive weights ωk(x) in
the fitted EF for oxygen therapy duration for different models, respectively, while holding other
covariates constant. The patterns are similar as in Subfigure 5c. The weights of model 1 is stable
while models from other sites may have different contribution to the weighted estimator for different
values of duration. Overall, the patterns in each plot are similar to Figure 5, which indicates the
robustness of our proposed estimators. We do stress that improvements to the weighting strategy for
different sample sizes at each site are needed. A strategy considering both treatment proportion as
well as covariate distributions across sites may further enhance the data-adaptive model averaging
estimator.
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A.4 R Package, Real data, and Replication Code

The proposed method has been implemented in an R package ifedtree and has been made available
on Github (github.com/ellenxtan/ifedtree). Although the eICU-CRD data used in our applica-
tion example cannot be shared subject to the data use agreement, access can be individually requested
at https://eicu-crd.mit.edu/gettingstarted/access/. We also provide the R code used
to replicate the simulation and data application results at github.com/ellenxtan/ifedtree.
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Figure 6: Box plots of the MSE of multiple CATE estimators with CT as the local model and a
sample size of 500 at each site for (a) discrete grouping and (b) continuous grouping across site,
respectively, varying scale of site-level heterogeneity. Estimators ending with “-cate" makes use of
ground truth treatment effects. The proposed methods ET and EF achieve competitive performance
compared to standard model averaging or ensemble methods in all settings.
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Figure 7: Box plots of the MSE of multiple CATE estimators with CT as the local model and a
sample size of 100 at each site for (a) discrete grouping and (b) continuous grouping across site,
respectively, varying scale of site-level heterogeneity. Estimators ending with “-cate" makes use of
ground truth treatment effects. The proposed methods ET and EF achieve competitive performance
in all settings.
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Table 1: Simulation results for ratio between MSE of the estimator and MSE of CT (local model)
with a sample size of 500 at each site. A smaller number indicates larger improvement over the local
model. Estimators ending with “-cate" makes use of ground truth treatment effects. Our proposed
methods ET and EF shows robust performance in all settings whether or not using the information of
ground truth τ1(x).

Discrete grouping Continuous grouping

Estimator c = 0 c = 0.2 c = 0.6 c = 1 c = 0 c = 0.2 c = 0.6 c = 1

Ratio of average of MSEs over 1000 replicates
MA 0.09 0.91 2.4 9.87 0.08 0.32 0.65 1.78

EWMA 0.57 0.62 0.61 0.62 0.56 0.65 0.7 0.77
EWMA-cate 0.42 0.5 0.49 0.5 0.42 0.49 0.53 0.59

STACK 0.44 0.45 0.44 0.45 0.45 0.45 0.48 0.54
STACK-cate 0.06 0.04 0.04 0.04 0.06 0.06 0.06 0.07

ET 0.12 0.17 0.16 0.16 0.13 0.24 0.29 0.37
ET-cate <0.01 <0.01 <0.01 <0.01 <0.01 0.08 0.1 0.07

EF 0.1 0.13 0.13 0.13 0.1 0.19 0.25 0.3
EF-cate <0.01 <0.01 <0.01 <0.01 <0.01 0.06 0.06 0.05

Ratio of standard deviation of MSEs over 1000 replicates
MA 0.15 0.35 0.76 3.05 0.14 0.24 0.38 0.81

EWMA 0.61 0.65 0.67 0.66 0.58 0.65 0.69 0.75
EWMA-cate 0.46 0.52 0.54 0.54 0.44 0.52 0.55 0.6

STACK 0.47 0.46 0.47 0.47 0.45 0.49 0.52 0.6
STACK-cate 0.1 0.08 0.08 0.08 0.09 0.11 0.12 0.14

ET 0.18 0.23 0.22 0.22 0.18 0.26 0.32 0.43
ET-cate 0.02 0.03 0.02 0.02 0.02 0.06 0.07 0.07

EF 0.17 0.19 0.19 0.2 0.17 0.23 0.29 0.39
EF-cate 0.03 0.03 0.03 0.03 0.03 0.06 0.07 0.08
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Figure 8: Box plots of the MSE of multiple CATE estimators with CT as the local model and a
sample size of 1000 at each site for (a) discrete grouping and (b) continuous grouping across site,
respectively, varying scale of site-level heterogeneity. Estimators ending with “-cate" makes use of
ground truth treatment effects. The proposed methods ET and EF achieve competitive performance
in all settings.
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Figure 9: Plots of the bias and MSE of EF-cate varying sample site at each site for (a) discrete
grouping and (b) continuous grouping across site, varying scale of site-level heterogeneity. Both
bias and MSE reduces to zero as the sample size increases.
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Figure 10: Box plots of the MSE of multiple CATE estimators with CF as the local model and a
sample size of 100 at each site for (a) discrete grouping and (b) continuous grouping across site,
respectively, varying scale of site-level heterogeneity. Estimators ending with “-cate" makes use of
ground truth treatment effects. The proposed methods ET and EF achieve competitive performance
in all settings.
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Figure 11: Box plots of the MSE of multiple CATE estimators with CF as the local model and a
sample size of 500 at each site for (a) discrete grouping and (b) continuous grouping across site,
respectively, varying scale of site-level heterogeneity. Estimators ending with “-cate" makes use of
ground truth treatment effects. The proposed methods ET and EF achieve competitive performance
in all settings.
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Figure 12: Box plots of the MSE of multiple CATE estimators with CF as the local model and a
sample size of 1000 at each site for (a) discrete grouping and (b) continuous grouping across site,
respectively, varying scale of site-level heterogeneity. Estimators ending with “-cate" makes use of
ground truth treatment effects. The proposed methods ET and EF achieve competitive performance
in all settings.

Table 2: Hospital-level information of our analysis cohort in eICU-CRD database.
Hospital Number of Number of Number of Bed Teaching Regionsite patients control treated capacity status

1 477 205 272 ≥ 500 False South
2 388 94 294 ≥ 500 False Midwest
3 464 129 335 ≥ 500 True South
4 523 162 361 ≥ 500 False South
5 149 71 78 250 - 499 False South
6 305 174 131 ≥ 500 False South
7 297 109 188 ≥ 500 True West
8 210 78 132 Unknown False Unknown
9 183 52 131 250 - 499 False West

10 379 161 218 ≥ 500 True Midwest
11 659 165 494 ≥ 500 True Midwest
12 200 55 145 250 - 499 False South
13 166 64 102 100 - 249 False Midwest
14 222 58 164 250 - 499 False South
15 163 58 105 ≥ 500 True Midwest
16 747 185 562 ≥ 500 True Northeast
17 435 240 195 ≥ 500 True South
18 234 70 164 ≥ 500 True Midwest
19 474 229 245 ≥ 500 False South
20 347 109 238 ≥ 500 True Midwest
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Figure 13: A local CT fitted with data in hospital 1 in the real-data application to estimating treatment
effects of oxygen therapy on hospital mortality.

female

sofa

age

bmi

duration

site

0 10 20 30 40
Relative Importance (%)

20

30

40

50

60

250 500 750
duration

bm
i

CATE
−0.125
−0.100
−0.075
−0.050
−0.025

0.040

0.045

0.050

0.055

80 120 160 200
duration

w
ei

gh
t

0.044

0.048

0.052

25.0 27.5 30.0 32.5
bmi

w
ei

gh
t

Model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

female

sofa

age

bmi

duration

site

0 10 20 30 40
Relative Importance (%)

20

30

40

50

60

250 500 750
duration

bm
i

CATE
−0.125
−0.100
−0.075
−0.050
−0.025

0.040

0.045

0.050

0.055

80 120 160 200
duration

w
ei

gh
t

0.044

0.048

0.052

25.0 27.5 30.0 32.5
bmi

w
ei

gh
t

Model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

female

sofa

age

bmi

duration

site

0 10 20 30 40
Relative Importance (%)

20

30

40

50

60

250 500 750
duration

bm
i

CATE
−0.125
−0.100
−0.075
−0.050
−0.025

0.040

0.045

0.050

0.055

80 120 160 200
duration

w
ei

gh
t

0.044

0.048

0.052

25.0 27.5 30.0 32.5
bmi

w
ei

gh
t

Model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.040

0.045

0.050

0.055

80 120 160 200
duration

w
ei
gh
t

0.040

0.045

0.050

0.055

25.0 27.5 30.0 32.5
bmi

w
ei
gh
t

Site
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(a)
(b)

(c)

Figure 14: Application to estimating treatment effects of oxygen therapy on hospital mortality with
a sample size weighting strategy. (a) Variable importance plot in the ensemble forest. The site
indicator appears to be the most important variable with the relative importance taking up about 48%,
followed by oxygen therapy duration and BMI. (b) Partial dependence plot of estimated treatment
effects varying duration and BMI while holding the other covariates constant. (c) Visualization of
data-adaptive weights in EF varying duration and site indicator, and varying BMI and site indicator,
respectively.
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