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Abstract

We address the problem of using observational data to estimate peer contagion
effects, the influence of treatments applied to individuals in a network on the
outcomes of their neighbours. A main challenge to such estimation is that
homophily—the tendency of connected units to share similar latent traits—acts
as an unobserved confounder for contagion effects. Informally, it’s hard to tell
whether your friends have similar outcomes because they were influenced by
your treatment, or whether it’s due to some common trait that caused you to
be friends in the first place. Because these common causes are not usually
directly observed, they cannot be simply adjusted for. We describe an approach
to perform the required adjustment using node embeddings learned from the
network itself. The main aim is to perform this adjustment non-parametrically,
without functional form assumptions on either the process that generated the
network or the treatment assignment and outcome processes. The key questions
we address are: How should the causal effect be formalized? And, when can
embedding methods yield causal identification?

1 Introduction

Consider the following example.

Example. We want to infer the effect that social pressure has on vaccination. Suppose we
observe networked data from a population where each unit i is a person in an interconnected
social network, and for each unit we know whether they were vaccinated at the beginning of the
study period, Ti , and whether they were vaccinated at the end of the study period, Yi . We are
interested in estimating the effects of the treatment Ti of person i on the outcome Yj of person j.
In addition to their vaccination status, each unit has attributes Ci that act as (proxies for) causes
of both the particular network ties they form, and their vaccination behavior. For instance, Ci
may include age, race, education status, income level, political affiliation, and so forth.

The core challenge here is that we want to estimate a causal effect (e.g., what would happen
if we intervened by vaccinating popular people?), but the variables Ci , C j act as confounders
between the treatment T j and outcome Yi . The reason is that when we define a contagion effect
from j to i we must condition on the presence of an edge between (i, j). The edge is causally
influenced by both Ci and C j , so the conditioning creates a dependency between these variables
(it acts as a collider). For example, if we learn that Alice and Bob are friends then we can infer
that they likely share a political affiliation. Accordingly, the association between T j and Yi may
be either due to the causal influence of T j on Yi (Bob got vaccinated because Alice did), or due
to the common cause (Alice and Bob got vaccinated because they are democrats, democrats get
vaccinated at higher rates, and it’s only due to chance that Alice got vaccinated before Bob). In
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general, homophily—the tendency of similar people to cluster in a network—is confounded with
contagion. [ST11]

Now, if we observed the attributes C , we could formalize the contagion effect using standard
causal tools and then identify the effect from observational data by adjusting for C [EB17; EKB16;
BDF20]. However, such detailed knowledge is often unavailable. Intuitively, we could instead
make use of the following observation. The pattern of network ties itself carries information
about each Ci , so we can estimate {Ĉi}i from the network. Then, we can adjust for the estimated
Ĉi in some suitable causal estimation procedure. The aim of this paper is to clarify this type of
procedure.

? provide an estimation strategy of this kind. They first assume that the network is generated
by either a stochastic block model [HLL83] or a latent space model [RFR16; HRH02]. The
attributes C correspond to the latent community identities or latent space positions. They then
further assume that the outcome of each unit is defined by a particular linear structural equation,
which includes a term for both the average treatment of that node’s neighbours, and a term
for the effect of the attributes Ci . Their procedure is to estimate C using the assumed network
model, and then use the estimated Ĉ in a linear regression to determine the coefficient of the
average-neighbour-treatment term.

The limitation of this approach is that it relies critically on the assumed parametric form of both
the network model and the outcome model. Indeed, even the target of estimation is defined as a
parameter of this assumed model. Our aim here is to develop a non-parametric version of this
procedure. This consists of three steps.

1. Formalize the target causal effect non-parametrically. The challenge here is that the
estimand must depend on the network we are working with (because contagion requires
knowing who is friends with whom) and the network must itself be modeled as a random
variable (to accommodate homophily).

2. Establish sufficient conditions for estimated attributes to yield causal identification. The
idea is that it is not necessary to exactly reconstruct C , but only extract the minimum
information that will identify the causal effect—this turns out to be (plausibly) a much
easier task.

3. A concrete method for contagion estimation using node embedding techniques.

This is preliminary work and we do not yet report experimental results from the method.

2 Setup

Consider a network Gn of n individuals, where connections between people are encoded through
undirected edges between nodes. We define the degree of a node as the number of connections
it has. The neighbors of node i are the nodes with which i has ties. Each such link is captured by
the network adjacency matrix A, where Ai j = 1{i and j share a tie}. To simplify notation, we take
Aii = 1 for all i—the treatment of unit i will influence its own outcome Yi . We also consider the
following vector of variables associated with each node:

Oi = (Yi , Ci , Ti),
where Yi is the observed outcome, Ti is the treatment, and Ci are (unobserved) attributes that

may causally influence Y , T and A. Each unit is sampled from some known distribution, Oi
iid∼ P.

Then, the network A is sampled from some unknown process that depends on {Ci}i .

More precisely, we consider the following structural equation model.

Ci ← fC[εCi
] (2.1)

Ai j ← fA[{Ci}i ,εi j] (2.2)

Ti ← fT [Ci ,εTi
] (2.3)

Yi ← fY [SY ({T j : Ai j = 1}), Ci ,εYi
]. (2.4)

The variables ε are exogenous noise, which we take to be identically distributed and independent
of the network and of each other. The function SY summarizes the neighbours’ treatment—e.g.,
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SY might be the average function. In words: the treatment assignment for each node i depends
only on its attributes Ci , the outcome assignment depends on the node attributes Ci and the
treatments of all its neighbours, and the network structure depends on all C . The structural
functions f are fixed but unknown.

This formalization is adapted from [Ogb+17]. It is modified to treat the network as a random
variable, and to simplify the dependence of the treatment and outcome on covariates (they allow
for dependency on covariates of neighbours as well).

3 Formalizing the causal estimand

With the assumed structural equation model in hand, we turn to formalizing the target causal
effect. Consider setting Ti ← t∗i for each unit i. We define the causal estimand to be

ψn :=
1
n

n
∑

i=1

E[Yi |do(T = t∗), {Ci}i , Gn]. (3.1)

That is, the estimand is the average outcome we would have seen had the treatment assignment
been set to T ← t∗. Critically, we condition on both the node attributes {Ci} and the network
Gn. The interpretation of the causal effect is then: the average outcome under the hypothetical
treatment, applied to the same set of people connected by the same link structure. This is certainly
not the only possible way of formalizing our goal. For instance, we might have conditioned
on the graph alone (marginalizing over attributes of people not fixed by the link structure), or
we might have marginalized out both the graph and the attributes (targeting a more generic
notion of contagion effect). However, this particular estimand has the advantage of being readily
interpretable without parametric assumptions, and, as we will see, plausibly identifiable from
observational data.

There is one apparent significant drawback of this formalization: the estimand is fundamentally
tied to the particular sample available in our study. When we ask questions such as, "what is the
social contagion effect of vaccination?" it’s usually with the goal of guiding policy. If we have a
precise estimate of the effect among a particular sample of people in, e.g., Wyoming, it’s unclear
how that informs our policy about a new network of people in Illinois. In ordinary practice, the
estimand (e.g., average treatment effect) is a parameter of some population, and judgements
about transportability of effects reduce to judgements about whether populations are similar.
Ideally, we’d like conditions under which the estimand approximates some population parameter,
so that the requisite judgements reduce to only the ordinary required ones (e.g., "Are social
dynamics in Illinois similar enough to social dynamics in Wyoming that results can be expected
to translate?").

Happily, such a result is possible. In Theorem 1 we justify the validity of the causal estimand ψn
introduced in Equation 3.1, by showing it converges to a fixed quantity as the size of the network
Gn increases. The result heavily relies upon Stein’s method ([Ros11]) and we include details of
the background and proof in the Appendix.

Before stating the theorem, we first note that the causal effect of peer influence

ψn :=
1
n

n
∑

i=1

E[Yi |do(T = t∗), {Ci}i , Gn],

represents a random variable since we are conditioning on the unknown confounders C . This
observation is a central point of the following theorem

Theorem 1 (Validity of causal estimand ψn). Consider an observed social network Gn, and let Dn
be the maximum degree of the nodes in Gn. If Dn = O(n1/4), and if E|Yi |4 <∞ for all nodes i, then
ψn→ψ in probability, for some real number ψ.

Proof. See Appendix.
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This theorem thus establishes that, provided the maximum network node degree grows no faster
than O(n1/4), the sequence of causal estimands {ψn}n converges to a fixed quantity which does
not depend on the particular network Gn. This confirms the validity of using the same measure
ψn to estimate social contagion in various different data samples.

4 Causal inference of peer effects using node embedding methods

Having formalized and motivated the target causal effect of interestψn, we now turn to sufficient
conditions for causally identifying ψn. Recall that ψn depends on the graph structure and the
unobserved confounders Ci . Exactly reconstructing the latent features Ci from the network
may be prohibitively difficult. However, we do not need to have access to the full covariate
information, but rather only to a proxy that suffices for causal identification. We thus establish
sufficient conditions for the inferred proxy to enable identification. The idea is to determine a
condition that is plausibly satisfied by already established node embedding methods. We state
our main theorem below.

Theorem 2 (Causal identification). Let G be the network and A be its adjacency matrix. Let
Vi := SY ({T j : Ai j = 1}) be the aggregated treatment at node i, and v∗ its value under the hypothetical
treatment intervention T = t∗. Suppose that for each node i we have an embedding λi ∈ Rk that
satisfies the following conditions.

i Ai j ⊥⊥ Yi |(λi , T j);

ii P(Vi = v∗ | λi(Ci))> 0 for all v∗;

iii λi is Ci-measurable.

Letting mGn
(t∗,λi) := E[Yi |Vi = SY ({t∗j : Ai j = 1}),λi , Gn], we have that

ψn =
1
n

n
∑

i=1

mGn
(t∗,λi). (4.1)

Proof. Consider Fig. 1 illustrating the issues that can arise due to the unobserved confounders
C . To estimate ψn, it is unavoidable to condition on the network structure, and implicitly on
the edges Ai j . Doing so, however, introduces a collider bias which prevents accurate estimation.
From Fig. 1 we can see that Ci blocks the backdoor path between T j and Yi that’s opened by
conditioning on Ai j . Accordingly,

E[Yi | do(T = t∗), Ci , Gn] = E[Yi | T = t∗, Ci , Gn]
= E[Yi | T = t∗,λi(Ci), Gn] (due to conditions (i) and (ii)).

Accordingly,

ψn =
1
n

n
∑

i=1

E[Yi |do(T = t∗), Ci , Gn]

can be identified by computing m(t∗,λi) for each node i of the graph and summing these
quantities up:

ψn =
1
n

n
∑

i=1

E[Yi |do(T = t∗), Ci , Gn] =
1
n

n
∑

i=1

mGn
(t∗,λi). (4.2)

In Theorem 2, we expect condition (i) to hold true because embedding methods are tools which
decouple the properties of the unit and the network structure, and have shown good empirical
performance at explaining the local network structure ([HYL17]). Condition (ii) represents
the standard positivity assumption required for performing causal inference, while assumption
(iii) reflects the requirement that the node embeddings should be functions of the latent node
attributes Ci .
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Figure 1: Identification of causal effects using embeddings in a semi-supervised learning problem.
This diagram shows a potential backdoor path passing through the unobserved confounders C j and Ci ,
while conditioning on the network structure (represented via the adjacency matrix variables Ai j) when
attempting to estimate the effect of the treatment T j on the response Yi . This problematic backdoor
path is blocked if Ai j is conditionally independent from the response Yi given the embedding λi and the
treatment Ti , allowing for successful causal adjustment.

5 Estimation of causal peer influence effects

Having established how to identify causal effects using black-box network embeddings, we now
discuss how to estimate these effects from data. Recall that, by theorem 2, the causal parameter
of interest is identified as:

ψn =
1
n

n
∑

i=1

mGn
(t∗,λi), (5.1)

where mGn
(t∗,λi) = E[Yi | T = t∗,λi(Ci), Gn]. The goal is then to use the observed data and

the network link structure to produce estimates m̂Gn
(t∗, λ̂i) of mGn

(t∗,λi(Ci)), where λ̂i is the
output of an embedding method that we hope converges to some λi satisfying the conditions of
theorem 2. We can then use the plug-in estimator:

ψ̂n =
1
n

n
∑

i=1

m̂Gn
(t∗, λ̂i). (5.2)

We use embedding based semi-supervised prediction models to learn λ̂ and m̂Gn
(t∗, λ̂i). For

concreteness, we describe a particular approach based on [Vei+19; VWB19]. The estimation
procedure follows three main steps:

Step 1. We train a model using relational empirical risk minimization [Vei+19] to learn embed-
dings λ̂i and m̂. Let Sample(Gn, k) be a sampling algorithm that returns a random subgraph of
size k from Gn (e.g., the subgraph induced by a random walk of length k). Randomly divide the
nodes into a subset I0 with labels that will not be used during training, and the remaining nodes
I\I0. For each vertex i, define vi = SY ({t j : Ai j = 1}). Then, define the loss function

L(Gk,λ,γ) =
∑

i∈I\I0

(yi −m(vi ,λi;γ))
2 +
∑

i, j∈I×I

CrossEntropy(Ai j ,σ(λ
T
i λ j)),

where σ is the sigmoid function. The second term is a network reconstruction term that extracts
node-level convariate information from the network by requiring the embeddings to be predictive
of the edge structure. The first term learns a predictor m, parameterized by γ, that predicts yi
from the aggregated treatment vi and the embedding λi . For instance, m could be a linear model
or a neural network.

Then, we train the model by fitting

λ̂, γ̂= argmin
λ,γ
EGk=Sample(Gn,k)[L(Gk,λ,γ)]. (5.3)
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Step 2. We define m̂Gn
(t∗,λi) = m(SY ({t∗j : Ai j = 1}),λi; γ̂). Then, for each unit i ∈ I0 we

compute m̂Gn
(t∗, λ̂i).

Step 3. Finally, we compute the estimate as:

ψ̂n(I0) =
1
|I0|

∑

i∈I0

m̂Gn
(t∗, λ̂i). (5.4)

6 Related work

This section offers a brief overview of some directions of work related to our paper. Firstly, there
have been a number of recent studies [Laa14; Ogb+17; TFS17; Leu21] which also tackle the
issue of causally estimating social contagion in observational studies, however they differ from
this work by assuming no unobserved sources of network confounding, such as homophily.

Other works which did account for latent confounding [SM16; ST11] used parametric models to
represent the network generating processes, whereas this paper aims to examine more general
cases of networks by using a nonparametric model.

Another important line of work focusing on estimating causal social influence in networks relies
on randomized experiments where treatments are randomly assigned to the network units, in
order to study how the responses of the neighbors are affected under various scenarios [EKB16;
TK13; Van10; Rub80]. However, since randomized experiments may not always be feasible, it is
convenient to also benefit from causal inference techniques for purely observational data.

Finally, some of the few recent studies which also address nonparametric peer influence estimation
from observational data propose different approaches which complement the node-embedding
based method proposed in this paper. [EB17] involves using high-dimensional adjustments for
covariates, whereas this work assumes that covariates are unobserved in addition to the network.
[ET21], on the other hand, does tackle the situation of unobserved confounding, yet it describes
using negative control outcome and exposure variables to estimate contagion effects, which
represents a different technique from the methods described in this paper.

7 Conclusions, limitations, and future directions

This paper tackled the problem of estimating social contagion from observational data in the
presence of unobserved confounding. The main contributions of this work at its current stage are

1. formalizing and justifying a causal estimand capturing contagion in the presence of
homophily;

2. giving sufficient conditions for network embeddings to enable causal identification.

This paper justified the validity of the proposed peer influence measure and embedding-based
prediction approach from a theoretical standpoint (theorems 1 and 2) and described a practical
method of obtaining an estimate of peer contagion (Section 5).

This work is however still in its preliminary stages. A future step involves illustrating the
performance of our estimation technique on a real social network dataset. Furthermore, one
current methodological limitation is the lack of an asymptotic normality result concerning the
peer influence estimator ψ̂n defined in Section 5. We seek to obtain such asymptotics in the future
which will enable us to conduct statistical inference in finite samples (and not just asymptotically),
by using normal approximations and constructing confidence intervals around the estimated
values ψ̂n.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please refer to section 7.
(c) Did you discuss any potential negative societal impacts of your work? [No] This

paper mainly focuses on proposing a new causal estimand for peer influence, and
describing a method for its estimation; this is a purely methodological paper which
does not have any negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please refer
to section 2 and to the assumptions made in Theorem 1.

(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new
assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?
[N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally iden-
tifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

Below we include the proof of Theorem 1, which shows the validity of our main measure, the
causal estimand ψn for peer contagion on the network Gn. Since this theorem heavily relies on
Stein’s method ([Ros11]), we first detail the necessary background and results below.

We first characterize the network influence of the response variable Yi for each node via the
notion of dependency neighborhoods [Ros11].

Definition 3 (Dependency neighborhoods.). An n-tuple (Y1, Y2, . . . , Yn) of random variables has
dependency neighborhoods Ni ⊆ {1,2, . . . , n}, i = 1,2, . . . , n, if i ∈ Ni and Yi is independent of
{Yj} j /∈Ni

.
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We show how Theorem 1 arises as a direct application of the following law of large numbers for
relational variables.

Theorem 4 (Law of large numbers for dependent random variables. Modified from [Ros11].).
Let Y1, . . . , Yn be random variables such that E[Y 4

i ]<∞, E[Yi] = µi , σ
2 = Var(
∑

i Yi), and define
W =
∑

i(Yi − µi)/σ. Assume that the variables (Y1, . . . , Yn) have dependency neighborhoods Ni ,
i = 1, 2, . . . , n, respectively, and also define D :=max1≤i≤n |Ni |. Let Z be a standard normal random
variable. Let dW be the Wasserstein metric. The following inequality holds

dW (W, Z)≤
D2

σ3

n
∑

i=1

E|Yi |3 +
p

28D3/2

p
πσ2

√

√

√

n
∑

i=1

E[Yi]4. (A.1)

Proof. The proof of this result follows immediately from Theorem 3.6 in [Ros11].

We are now ready to return to the proof of the main theorem 1. For the network Gn, let us
consider the following n-tuple of random variables (Ỹ1, . . . , Ỹn), where

Ỹi =
E[Yi |do(T = t∗), {Ci}i , Gn]

n
.

Let σ2 = Var(
∑n

i=1 Ỹi) and µi = E[Ỹi] = E
�

E[Yi |do(T=t∗),{Ci}i ,Gn]
n

�

. Consider then the random

variable Wn =
∑n

i=1(Ỹi −µi)/σ.

Furthermore, note that, due to the structural equation model defined in section 2, and its
assumption that the errors εYi

have an i.i.d. structure, it follows that, for each node i, the size of
the dependency neighborhoods Ni of E[Yi |do(T = t∗), {Ci}i , Gn], and implicitly Ỹi , is the same
as the degree of the node. Therefore, according to Theorem 4, it follows that for Z a standard
normal variable, it holds that

dW (Wn, Z)≤
D2

n

σ3

n
∑

i=1

E|Ỹi |3 +
p

28D3/2

p
πσ2

√

√

√

n
∑

i=1

E|Ỹi |4, (A.2)

where Dn is the maximal degree of the network Gn.

By the assumptions of Theorem 1, since E|Ỹi |4 is finite, it follows via Jensen’s inequality that all
lower moments must be finite as well, and in particular, E|Ỹi |3 <∞ and VarE[Ỹi]. It therefore
follows that σ = O(

p
n),
∑n

i=1E|Ỹi |3 = O(n), and
∑n

i=1E|Ỹi |4 = O(n). To obtain the convergence
of ψn, it suffices to do so for its scaled version, Wn. In turn, it suffices to show that the right hand
side of inequality A.2 is finite. For that, one needs to ensure that

max

(

D2
n

σ3

n
∑

i=1

E|Ỹi |3,

p
28D3/2

p
πσ2

√

√

√

n
∑

i=1

E|Ỹi |4
)

is finite as n→∞. A little calculation shows that the right hand side becomes O(1) if Dn =
O(n1/4).

Since random variable convergence in the Wasserstein distance implies convergence in distribution
[PZ18], it follows that for some appropriately chosen sequences of real numbers an ∈ R and
bn > 0 we obtain that bn(ψn − an)→D Z . This further implies that there exists a real number
ψ such that ψn→ψ in probability. This concludes the proof of the theorem and confirms the
statistical validity of the estimand ψn.
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