
Typing assumptions improve identification
in causal discovery

Philippe Brouillard
ServiceNow

Mila, Université de Montréal

Perouz Taslakian
ServiceNow

Alexandre Lacoste
ServiceNow

Sébastien Lachapelle
Mila, Université de Montréal

Alexandre Drouin
ServiceNow

Abstract

Causal discovery from observational data is a challenging task to which an exact
solution cannot always be identified. Under assumptions about the data-generative
process, the causal graph can often be identified up to an equivalence class. Propos-
ing new realistic assumptions to circumscribe such equivalence classes is an active
field of research. In this work, we propose a new set of assumptions that constrain
possible causal relationships based on the nature of the variables. We thus introduce
typed directed acyclic graphs, in which variable types are used to determine the
validity of causal relationships. We demonstrate, both theoretically and empirically,
that the proposed assumptions can result in significant gains in the identification of
the causal graph.

1 Introduction

Can the temperature of a city alter its altitude (Peters et al., 2017)? Can a light bulb change the state
of a switch? Can the brakes of a car be activated by their indicator light (de Haan et al., 2019)?
Chances are, you did not need to think very hard to answer these questions, since you intuitively
understand the implausibility of causal relationships between certain types of entities. This form of
prior knowledge has been shown to play a key role in causal reasoning (Griffiths et al., 2011; Schulz
& Gopnik, 2004; Gopnik & Sobel, 2000). In fact, in the absence of evidence (e.g., data), humans
tend to reason inductively and use domain knowledge to generalize known causal relationships to
new, similar, entities (Kemp et al., 2010).

Nonetheless, the elucidation of causal relationships often goes beyond human intuition. The abun-
dance of large-scale scientific endeavours to understand the causes of diseases (1KGP, 2010) or
natural phenomena (Runge et al., 2019) are good examples. In such cases, computational methods
for causal discovery may help reveal causal relationships based on patterns of association in data (see
Heinze-Deml et al. (2018) for a review). The most common setting consists of representing causal
relationships as a directed acyclic graph where vertices correspond to variables of interest and edges
indicate causal relationships. Additional assumptions, like the faithfulness condition, are then made
to enable reasoning about graph structures based on conditional independences in the data. While
these enable data-driven causal discovery, the underlying causal graph can only be identified up to its
Markov equivalence class (Peters et al., 2017), which can often be very large (He et al., 2015) thus
leaving many edges unoriented.

Inspired by how humans use types to reason about causal relationships, this work explores if prior
knowledge about the nature of the variables can help reduce the size of such equivalence classes.

Causal Inference & Machine Learning: Why now? workshop at the 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), Sydney, Australia.

Building on the theoretical foundations of causal discovery in directed acyclic graphs, we propose
a new theoretical framework for the case where variables are labeled by type. Such types can be
attributed based on prior knowledge, e.g., via a domain expert. We then impose assumptions on how
types can interact with each other, which constrains the space of possible graphs and leads to reduced
equivalence classes. We show, both theoretically and empirically, that when such assumptions hold in
the data, significant gains in the identification of causal relationships can be made.

Contributions:

• We propose a new set of assumptions for causal discovery, based on variable types (Section 4).
• We present a simple algorithm to incorporate these assumptions in causal discovery (Section 5).
• We prove theoretical results that guarantee convergence of the equivalence class to a singleton,

i.e., identification, when the number of vertices tends to infinity and the number of types is
fixed (Section 6).

• We present an empirical study that supports our theoretical results (Section 7).

This is a work in progress. At the end of each section that presents a contribution, we include a short
work in progress paragraph to highlight extensions that we are currently exploring.

2 Problem formulation

Causal graphical models. In this work, we adopt the framework of causal graphical models
(CGM) (Peters et al., 2017). Let X = (X1, . . . , Xd) be a random vector with distribution PX .
Let G = (V,E) be a directed acyclic graph (DAG) with vertices V = {v1, . . . , vd}. Each vertex
vi ∈ V is associated to variable Xi in G, and a directed edge (vi, vj) ∈ E represents a direct causal
relationship from Xi to Xj . We assume that PX can be factorized according to G, that is,

p(x1, . . . , xd) =

d∏
j=1

p(xj |paGj),

where paGj denotes the parents1 of Xj in G. From this graph, it is possible to answer causal questions
(e.g., via do-calculus (Pearl, 1995)). However, in many situations, the structure of G is unknown and
must be inferred from data.

Causal discovery. The task of causal discovery consists of learning the structure of G based on
observations from PX . Some assumptions are required to make this possible. By adopting the
CGM framework, we assume: (i) causal sufficiency, which states there is no unobserved variable
that causes more than one variable in X and (ii) the causal Markov property, which states that
Xi |= GXj |Z =⇒ Xi |= PX

Xj |Z, where Z is a set composed of variables in X , Xi |= GXj |Z
indicates that Xi and Xj are d-separated by Z in G, and Xi |= PX

Xj |Z indicates that Xi and Xj

are independent conditioned on Z. Additionally, we assume (iii) faithfulness, which states that
Xi |= PX

Xj |Z =⇒ Xi |= GXj |Z. Hence, conditional independences in the data can be used to
learn about d-separations in G.

Equivalence classes. Even with these assumptions, G can only be recovered up to a Markov
equivalence class (MEC), which is a set containing all the DAGs that can represent the same
distributions asG. The MEC is often characterized graphically using an essential graph or Completed
Partially Directed Acyclic Graph (CPDAG), which corresponds to the union of all Markov equivalent
DAGs (Andersson et al., 1997). In some cases, e.g., for sparse graphs, the size of the MEC can
be huge (He & Yu, 2016; He et al., 2015), significantly limiting inference about the direction of
edges in G. Hence, it is a problem of key importance to find new realistic assumptions to shrink the
equivalence class.

There have been a wealth of approaches to this problem. For instance, some have made progress by
including data collected under intervention (Hauser & Bühlmann, 2012), making assumptions about
the functional form of causal relationships (e.g. Peters et al. (2014); Peters & Bühlmann (2014);

1We are referring to the corresponding vertex vj in G.

2

t-edge orientations

a

cb

a)

c2

a1

c1b1

c2

a1

c1b1

b) Consistent t-DAG c) Inconsistent t-DAG

tt

t

Figure 1: (a) Representation of t-edges orientations, where colors represent the different types a, b,
and c. (b) Representation of a t-DAG that is consistent and follows the orientation of the t-edges in
(a). (c) Representation of a t-DAG that is not consistent: the red edge c2 → b1 is not consistent with
b1 → c1, and the c2 → c1 edge violates Definition 3.

Shimizu et al. (2006)), or including background knowledge on the direction of edges Meek (1995).
In this work, we propose an alternative approach, based on background knowledge, where types are
attributed to variables and the interaction between types is constrained.

3 Related works

The inclusion of background knowledge in causal discovery aims to reduce the size of the solution
space by adding or ruling-out causal relationships based on expert knowledge. Several forms of
background knowledge have been proposed, which place various levels of burden on the expert.
Below, we review those most relevant to our work (see Constantinou et al. (2021) for a review).

Hard background knowledge. This type of background knowledge is “hard” in the sense that it
must be respected in the inferred graph structures. Previous works have considered: sets of forbidden
and known edges (Meek, 1995), a known ordering of the variables (Cooper & Herskovits, 1992),
partial orderings of the variables (Andrews, 2020; Scheines et al., 1998), and ancestral constraints (Li
& Beek, 2018; Chen et al., 2016). Among these, partial orderings (or tiered background knowledge)
are the most similar to our contribution. In this setting, it is assumed that an expert partitions the
variables into sets called tiers, and orders the tiers such that variables in later tier cannot cause
variables in an earlier tier. In contrast, while we require the expert to partition variables into sets (by
type), we do not assume that an ordering is known a priori. In the context of causal discovery, the
possible inter-type interactions would be learned with the graph structure.

Soft background knowledge. A setting similar to ours, where the type of each variable dictates
its possible causal relations, was presented in Mansinghka et al. (2012). They propose a Bayesian
method to use this prior knowledge in causal discovery. Their work shows the benefits of such priors,
but they do not investigate this space of graphs and their properties w.r.t. to structure identifiability.

Realism of assumptions. Interestingly, several recent works applying causal discovery to real-world
problems have used expert knowledge that is compatible with our proposed framework. For example,
in their work on Alzheimer’s disease, Shen et al. (2020) claim “edges from biomarkers or diagnosis
to demographic variables are prohibited” and “edges among demographic variables are prohibited”;
clearly reasoning about relationships between types of variables. Similarly, the work of Flores et al.
(2011) outlines an application of tiered background knowledge in a medical case study. Converting
this setting to ours simply involves considering each tier as a variable type. Hence, it is clear that the
typing assumptions, and associated theoretical results, that we propose are realistic and that they are
applicable in practice.

4 Typed directed acyclic graphs

Our work builds on two fundamental structures: typed directed acyclic graphs (t-DAG), which are
essentially DAGs with typed vertices; and t-edges, which are sets of edges relating vertices of given
types. Formal definitions follow.

Definition 1 (t-DAG). A t-DAG is a tuple (V,E) with a mapping T : V → T such that (V,E) forms
a DAG and T (vi) ∈ T is the type of vertex vi ∈ V , with T = {t1, . . . , tk}.

3

Definition 2 (t-edge). A t-edge is a set of edges between vertices of given types in a t-DAG. More
formally, E(t1, t2) = {(vi, vj) ∈ E |T (vi) = t1, T (vj) = t2} for any pair of types t1, t2 ∈ T .

For example, the graphs illustrated in Fig. 1 (b) and (c) are t-DAGs where colors represent types and
the set E(a, c) = {(a1, c1), (a1, c2)} is a t-edge between types a and c.

4.1 Assumptions on type interactions

We now introduce the type consistency assumption, which constrains the possible interactions between
variables of different types.
Definition 3 (Consistent t-DAG). A consistent t-DAG is a t-DAG where for every t-edgeE(t1, t2) 6= ∅,
we have that E(t2, t1) = ∅. We refer to this additional constraint as type consistency.

For conciseness, we denote E(t1, t2) 6= ∅ as t1
t−→ t2. Note that this definition implies that there are

no t-edges between vertices of the same type in a consistent t-DAG.

In Fig. 1 (b), we present an example of a consistent t-DAG. In contrast, the t-DAG shown in Fig. 1 (c)
is not consistent: the t-edge E(c, b) (purple to white) contains the edge (c2, b1), while the reverse
t-edge, E(b, c), is not empty since it contains (b1, c1). Notice how, the orientation of all t-edges,
summarized in Fig. 1 (a), fully determines the orientation of edges in a consistent t-DAG.

Note that alternative assumptions could have been considered. For instance, we could have assumed
that t-edges form a DAG (i.e. the types have a partial ordering). However, the assumptions considered
here are less restrictive and, as we demonstrate later, lead to interesting results.

4.2 Equivalence classes for consistent t-DAGs

We define the equivalence classes MEC and t-MEC as the set of DAGs and the set of consistent
t-DAGs that are Markov equivalent, respectively.
Definition 4 (MEC). The MEC of a t-DAG Dt is M(Dt) = {D′|D′ ∼ Dt} where “∼” denotes
Markov equivalence.

Definition 5 (t-MEC). The t-MEC of a consistent t-DAGDt isMt(Dt) = {D′t|D′t
t∼ Dt} where “ t∼”

denotes Markov equivalence limited to consistent t-DAGs with the same mapping T as Dt.

To represent an equivalence class, we can use an essential graph, which corresponds to the union of
equivalent DAGs.
Definition 6 (Essential graph). The essential graph D∗ associated to the consistent t-DAG Dt is:

D∗ := ∪D∈M(Dt)D

The union over graphs is defined as the union of their vertices and edges: G1∪G2 := (V1∪V2, E1∪
E2). Also, if (vi, vj) ∈ G and its opposite (vj , vi) ∈ G, then the edge is considered to be undirected.
Definition 7 (t-Essential graph). The t-essential graph D∗t associated to the consistent t-DAG Dt is

D∗t := ∪D∈Mt(Dt)D

4.3 Space of consistent t-DAGs and size of t-MEC

We consider some statements that can directly be made about the space of consistent t-DAGs and the
size of t-MEC with respect to their non-typed counterparts.

By definition, the space of consistent t-DAGs (with k types and d vertices), T -DAG(k, d), is included
in the space of DAGs with the same number of nodes and types, DAG(k, d). Moreover, as stated
in Proposition 1, for a number of types smaller than the number of vertices, the space of consistent
t-DAGs is strictly smaller than that of DAGs.
Proposition 1. T -DAG(k, d) ⊂ DAG(k, d) for k < d, where d is the number of vertices and k is
the number of types.

Notice that, in the limit case k = d, i.e. every vertex has a different type, the t-DAG is always
consistent and T -DAG(k, d) = DAG(k, d).

4

b1

a1 a2

b1

a1 a2

b)a)

Figure 2: (a) The two-type fork structure. In this illustration, a1 and a2 are of one type (purple) and
b1 is of another type (orange). (b) An orientation rule that can be used in combination with Meek
(1995)’s rules to orient two-type forks.

The t-essential graph is identical to the essential graph except for the additional edges which can be
oriented thanks to the type consistency assumption. This is summarized in Proposition 2.

Proposition 2. Let D∗t and D∗ be, respectively, the t-essential and essential graphs of an arbitrary
consistent t-DAG Dt. Then, Dt ⊆ D∗t ⊆ D∗.

From the t-essential graph, we can easily derive an upper bound on the size of the t-MEC based on
the number of undirected edges.

Proposition 3 (Upper bound on the size of the t-MEC). For any consistent t-DAG Dt, we have
|Mt(Dt)| ≤ 2u, where u is the number of undirected t-edges in the t-essential graph of Dt.

From this bound, we can also directly conclude that if the t-essential graph contains no undirected
t-edges, |Mt(Dt)| = 1. In other words, Dt is identified.

Work in progress The type consistency assumption proposed above does not allow for edges
to exist between variables of the same type. We are currently working on a relaxed version that
allows such edges. Concretely, this involves minor modifications to Definition 3, Proposition 1, and
Proposition 3. Notably, Proposition 3 needs to include an additional term to account for undirected
edges between variables of the same type. Conclusions such as the fact that T -DAG(k, d) ⊂
DAG(k, d) (Proposition 1) will still hold, with only minor changes to the conditions.

5 An algorithm to find the t-essential graph

To make practical use of the above definitions, we seek an algorithm that can recover the t-essential
graph based on a set of observational data and variable types attributed by a domain expert. Following
previous work, it would be intuitive to make use of Meek (1995)’s rules as follows:

1. Recover the essential graph by applying an algorithm like PC (Spirtes et al., 2000) to the
data.

2. Enforce type consistency: If there exists an oriented edge between any pair of variables with
types t1, t2 ∈ T in the graph of the previous step, then conclude t1

t−→ t2, i.e., orient all
edges between these types.

3. Apply Meek (1995)’s rules to propagate the edge orientations derived in Step (2) (see their
Section 2.1.2).

4. Repeat from Step (2) until the graph is unchanged.

This algorithm is sound, i.e., all edges that it orients are also oriented in the t-essential graph.
However, it is not complete — some edges that should be oriented in the t-essential graph will remain
unoriented.

To see this, consider the following simple example of a consistent three-vertex t-DAG that we call the
two-type fork (illustrated in Fig. 2 a). The essential graph for this t-DAG obtained at Step (1), would
be completely undirected since it contains no immoralities. This would result in a case where none
of Meek (1995)’s rules are applicable and thus, Step (2) would not orient any edges. The algorithm
would therefore stop and return a fully undirected graph. However, according to the following
proposition, the two-type fork should have been oriented.

5

Proposition 4. If a consistent t-DAG Dt contains vertices a1, a2, b1 with types T (a1) = T (a2) = a

and T (b1) = b, with edges a1 ← b1 → a2, then the t-edge b t−→ a is directed in the t-essential graph,
i.e., the direction of causation between types b and a is known.

The proof follows the argument that if the true orientation were a t−→ b, this would create an
immorality, which in turn would orient the edges in the essential graph. Because we assume type
consistency (Definition 3), the only other possible orientation is b t−→ a.

Nevertheless, adding a rule to orient such structures in Step (2), as illustrated in Fig. 2 b), is not
sufficient to obtain a complete algorithm. In Appendix B, we show more complex cases (not local
and involving multiple t-edges) that are not covered, even with this additional orientation rule.

It remains an open question whether one could design a polynomial-time algorithm to find the
t-essential graph as Meek (1995) and Andersson et al. (1997) did for essential graphs. For now, we
propose the following algorithm, which has a time complexity exponential in the number of types:

1. Run the previously described (incomplete) algorithm, adding the two-type fork case to the
orientation rules in Step (2).

2. Enumerate all t-DAGs that can be produced by orienting edges in the graph resulting from
the previous step. Reject any inconsistent t-DAG.

3. Take the union of all these t-DAGs (see Definition 7) to obtain the t-essential graph.

In practice, the non-polynomial time complexity was found to be non-prohibitive in our experiments.

Work in progress The algorithm presented in this section assumes that the practitioner has access
to the essential graph and then further orients edges using type consistency. What if the true essential
graph is unknown? One could use a causal discovery algorithm, but for finite sample sizes, the
inferred essential graph could contain errors, which may contradict type consistency. We are thus
developing a causal discovery algorithm (with standard consistency results) that is guaranteed to
produce a valid t-essential graph.

6 Identification for random graphs

In this section, we explore the benefits in identification that result from using variable typing in a
class of graphs generated at random based on a process inspired by the Erdős-Rényi random graphs
model Erdős & Rényi (1959).

Assume we are given a set of k types t1, . . . , tk, probabilities p1, . . . , pk ∈ (0, 1]k of observing each
type s.t. p1 + ...+ pk = 1, and a t-interaction matrix A ∈ [0, 1]k×k where each cell (i, j) defines the
probability pij that a variable of type ti is a direct cause of a variable of type tj . As per Definition 3
(type consistency), we impose that if pij > 0, then pji = 0.
Definition 8. (Random sequence of growing t-DAG) We define a random sequence of t-DAGs
(Dn

t)
∞
n=0 with Dn

t = (V n, En) and |V n| = n, such that D0
t = (∅, ∅). Each new t-DAG Dn

t in the
sequence is obtained from Dn−1

t as follows: Create a new vertex vn and sample its type from a
categorical distribution with probabilities p1, ..., pk; Let V n = V n−1

⋃
{vn}; To obtain En, for

every vertex vi ∈ V n−1, add the edge (vi, vn) to En−1 with probability pT (vi),T (vn).

Our main theorem below states that, as we add more vertices to a random sequence of t-DAGs, we
get closer to identifiability. We defer the proof to Appendix A.5.
Theorem 1. Let (Dn

t)
∞
n=0 be a random sequence of growing t-DAGs as defined in Definition 8. Then

the size of the t-MEC converges to 1 exponentially fast, i.e., there exist a C and n0 such that for all
n > n0,

P (|Mt(D
n
t)| > 1) < Ce−rn,

where r = − 1
2 max(ln(1− pjpij), ln(1− pi)).

To give an intuition for the proof, recall that the t-MEC shrinks every time we orient a t-edge. In
addition, Proposition 3 tells us that we can orient a t-edge if we observe a two-type fork structure. We

6

10 20 30 40 50 60 70 80 90 100
Number of vertices

1

10

100

1000

Si
ze

 o
f e

qu
iv

al
en

ce
 c

la
ss

MEC
t-MEC

(a) Varying the number of vertices

2 5 10 15 20 30 40 50
Number of types

1

10

100

Si
ze

 o
f e

qu
iv

al
en

ce
 c

la
ss

MEC
t-MEC

(b) Varying the number of types

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Density

1

10

100

1000

Si
ze

 o
f e

qu
iv

al
en

ce
 c

la
ss

MEC
t-MEC

(c) Varying the edge density

Figure 3: Size of the equivalence classes (MEC and t-MEC) w.r.t.various graph properties. a) Number
of vertices: the t-MEC shrinks with the number of vertices, while the MEC does not. b) Number of
types: The t-MEC grows with the number of types, since less constraints are placed on the structure of
the graphs. The size of the MEC is mostly constant. c) Edge density (i.e., probability of connectivity
p): The MEC and t-MEC both shrink as connectivity increases.

thus argue that, as we add more vertices, the probability of observing a two-type fork (Proposition 4)
for arbitrary type pairs converges to 1. This argument relies on the fact that the number of types k
remains constant throughout as the random t-DAG grows.

Work in progress Could we get a result similar to Theorem 1 if we modified Definition 3 to allow
edges between variables of the same type? Preliminary empirical results (not shown) suggest that
the size of the t-MEC does converge to something much smaller than the size of the MEC. We are
making progress towards a formal result that explains our empirical observations, which we will
include in future revisions of this work.

7 Experiments

We perform multiple experiments to understand how the size of MECs and t-MECs compare 2. For a
given t-DAG, the size of the MEC is obtained by finding its CPDAG (without considering types) and
enumerating all DAGs that do not introduce a cycle or add an immorality. For the same t-DAG, the
size of the t-MEC is obtained by applying the algorithm described in Section 5.

2The code used to perform these experiments is available at https://github.com/ElementAI/
typed-dag.

7

https://github.com/ElementAI/typed-dag
https://github.com/ElementAI/typed-dag

The t-DAGs that we consider are randomly generated according to the process described at Defini-
tion 8. Let k be the number of types in the t-DAG. We attribute uniform probability to each type, i.e.,
pi = 1/k, ∀i ∈ {1, ..., k}. The t-interaction matrix A is defined as follows. For each pair of types
(ti, tj), s.t., i 6= j, the direction of the t-edge is sampled randomly with uniform probability and we
use a fixed probability of interaction p, which controls the graph density. For example, if the direction
ti

t−→ tj is sampled, then Aij = p and Aji = 0. In what follows, unless otherwise specified , the
number of vertices is 50, the number of types is 10, and the probability of interaction is p = 0.2.

In Fig. 3a, 3b, and 3c, the size of the equivalence classes are compared with respect to the number
of vertices, the number of types, and the density, respectively. All boxplots are calculated over 100
random consistent t-DAGs. First, in Fig. 3a we see that as the number of vertices increases (and
the number of types remains constant), the size of the t-MEC converges to 1, as demonstrated in
Section 6. In contrast, the size of the MEC first increases and then remains near constant. Notice
how the size of the MEC and the t-MEC are identical when the number of vertices equals the number
of types; this is because type consistency does not constrain the graph structure. Second, in Fig. 3b,
as the number of types increases, the size of the t-MEC increases. This is expected, because as
the number of types approaches the number of vertices, type consistency imposes less structural
constraints. Further, notice that the size of the MEC changes with the number of types, even though
it is agnostic to type consistency. This is because t-DAGs with fewer types (e.g., 2) are more likely to
contain immoralities (see Proposition 1), leading to smaller MECs. Third, in Fig. 3c, as the density
increases, the size of the MEC and the t-MEC both decrease. This is in line with the observations of
He et al. (2015).

In summary, all our experiments indicate that the size of the t-MEC is smaller or equal to that of the
MEC for random t-DAGs. The difference is particularly striking when the number of types is low and
the number of vertices is high. Of particular interest are the results shown in Fig. 3a, as they provide
empirical evidence for the correctness of Theorem 1.

Work in progress As stated in Section 5, we are developing a causal discovery algorithm to learn
consistent t-DAGs from data. Future revisions of this work will include structure learning experiments
on simulated and real datasets, and a comparison to state-of-the-art causal discovery algorithms that
do not exploit type consistency as part of their graph learning process.

8 Discussion

In this work, we addressed an important problem in causal discovery: it is often impossible to identify
the causal graph precisely, due to the size of its Markov equivalence class. This is particularly true for
sparse graphs, where the size of the MEC grows super-exponentially with the number of vertices (He
et al., 2015). In this sense, we proposed a new type of assumption based on variable types, which we
formalized as typed directed acyclic graphs (t-DAGs). Our theoretical and empirical results clearly
demonstrate that there exists conditions in which our variable-typing assumptions greatly shrink the
size of the equivalence class. Hence, when such assumptions hold in the data, gains in identification
are to be expected.

We note that the new assumptions that we introduce can be used in conjunction with other strategies
to shrink the size of the equivalence class, such as considering interventions (Hauser & Bühlmann,
2012), hard background knowledge on the presence/absence of edges (Meek, 1995), or functional-
form assumptions (Peters et al., 2014; Peters & Bühlmann, 2014; Shimizu et al., 2006). Moreover,
our assumptions could be used with methods that estimate treatment effects from equivalence classes,
such as IDA (Perkovic et al., 2017), to improve their accuracy.

We believe that this work may stimulate new advances at the intersection of machine learning and
causality (Schölkopf et al., 2021; Schölkopf, 2019). In fact, machine learning algorithms excel at
classification, and thus it may be interesting to explore a setting where the variable types are learned
based on some features. Type assignments could be learned in parallel with causal discovery, using
recent methods for differentiable causal discovery (Brouillard et al., 2020; Zheng et al., 2018). This
may further reduce the burden on the human expert in cases where types are hard to assign. As an
example, consider the task of learning causal models of gene regulatory networks. One could train a
model to assign types to genes based on their categorization in the gene ontology (Gene Ontology
Consortium, 2004) or on features of their DNA sequence.

8

Additionally, an interesting future direction would be to use our typing assumptions to perform causal
discovery on multiple graphs at once, i.e., multi-task causal discovery. In fact, assume that we are
given data for multiple groups of variables that correspond to disjoint systems (no interactions across
groups), but that share similar types. It would be possible to use type consistency (Definition 3) to
propagate t-edge orientations across graphs.

In conclusion, the results reported in this work show that considering typing assumptions has the
potential to improve identification in causal discovery. However, we barely scratched the surface of
what is possible. Future work will include extensive experiments to put our theoretical work into
practice on real-world datasets and will further explore the aforementioned directions.

Acknowledgements

The authors are grateful to Assya Trofimov, David Berger, and Jean-Philippe Reid for helpful
comments and suggestions. Sébastien Lachapelle is supported by an IVADO Excellence PhD
scholarship.

References
1000 Genomes Project Consortium (1KGP) and others. A map of human genome variation from

population-scale sequencing. Nature, 467(7319):1061, 2010.

Andersson, S. A., Madigan, D., Perlman, M. D., et al. A characterization of markov equivalence
classes for acyclic digraphs. Annals of statistics, 25(2):505–541, 1997.

Andrews, B. On the completeness of causal discovery in the presence of latent confounding with
tiered background knowledge. In The 23rd International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 4002–4011. PMLR,
2020.

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., and Drouin, A. Differentiable causal
discovery from interventional data. In Advances in Neural Information Processing Systems 33,
2020.

Chen, E. Y., Shen, Y., Choi, A., and Darwiche, A. Learning bayesian networks with ancestral
constraints. In Advances in Neural Information Processing Systems 29, pp. 2325–2333, 2016.

Constantinou, A. C., Guo, Z., and Kitson, N. K. Information fusion between knowledge and data in
bayesian network structure learning. arXiv preprint arXiv:2102.00473, 2021.

Cooper, G. F. and Herskovits, E. A bayesian method for the induction of probabilistic networks from
data. Machine learning, 9(4):309–347, 1992.

de Haan, P., Jayaraman, D., and Levine, S. Causal confusion in imitation learning. In Advances in
Neural Information Processing Systems 32, pp. 11693–11704, 2019.

Erdős, P. and Rényi, A. On random graphs. Publicationes Mathematicae Debrecen, 6:290–297, 1959.

Flores, M. J., Nicholson, A. E., Brunskill, A., Korb, K. B., and Mascaro, S. Incorporating expert
knowledge when learning bayesian network structure: a medical case study. Artificial intelligence
in medicine, 53(3):181–204, 2011.

Gene Ontology Consortium. The gene ontology (go) database and informatics resource. Nucleic
acids research, 32(suppl 1):D258–D261, 2004.

Gopnik, A. and Sobel, D. M. Detecting blickets: How young children use information about novel
causal powers in categorization and induction. Child development, 71(5):1205–1222, 2000.

Griffiths, T. L., Sobel, D. M., Tenenbaum, J. B., and Gopnik, A. Bayes and blickets: Effects of
knowledge on causal induction in children and adults. Cognitive Science, 35(8):1407–1455, 2011.

9

Hauser, A. and Bühlmann, P. Characterization and greedy learning of interventional markov equiv-
alence classes of directed acyclic graphs. The Journal of Machine Learning Research, 13(1):
2409–2464, 2012.

He, Y. and Yu, B. Formulas for counting the sizes of markov equivalence classes of directed acyclic
graphs. arXiv preprint arXiv:1610.07921, 2016.

He, Y., Jia, J., and Yu, B. Counting and exploring sizes of markov equivalence classes of directed
acyclic graphs. The Journal of Machine Learning Research, 16(1):2589–2609, 2015.

Heinze-Deml, C., Maathuis, M. H., and Meinshausen, N. Causal structure learning. Annual Review
of Statistics and Its Application, 5:371–391, 2018.

Kemp, C., Goodman, N. D., and Tenenbaum, J. B. Learning to learn causal models. Cognitive
Science, 34(7):1185–1243, 2010.

Li, A. and Beek, P. Bayesian network structure learning with side constraints. In International
Conference on Probabilistic Graphical Models, pp. 225–236. PMLR, 2018.

Mansinghka, V., Kemp, C., Griffiths, T., and Tenenbaum, J. Structured priors for structure learning.
arXiv preprint arXiv:1206.6852, 2012.

Meek, C. Causal inference and causal explanation with background knowledge. arXiv preprint
arXiv:1302.4972, 1995.

Pearl, J. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Perkovic, E., Kalisch, M., and Maathuis, M. H. Interpreting and using cpdags with background
knowledge. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence.
AUAI Press, 2017.

Peters, J. and Bühlmann, P. Identifiability of gaussian structural equation models with equal error
variances. Biometrika, 101(1):219–228, 2014.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. Causal discovery with continuous additive
noise models. The Journal of Machine Learning Research, 15(1):2009–2053, 2014.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer,
M., Mahecha, M. D., Muñoz-Marı́, J., et al. Inferring causation from time series in earth system
sciences. Nature communications, 10(1):1–13, 2019.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., and Richardson, T. The tetrad project: Constraint
based aids to causal model specification. Multivariate Behavioral Research, 33(1):65–117, 1998.

Schölkopf, B. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y.
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021.

Schulz, L. E. and Gopnik, A. Causal learning across domains. Developmental psychology, 40(2):162,
2004.

Shen, X., Ma, S., Vemuri, P., and Simon, G. Challenges and opportunities with causal discovery
algorithms: application to alzheimer’s pathophysiology. Scientific reports, 10(1):1–12, 2020.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. A linear non-gaussian acyclic model for
causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030, 2006.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D. Causation, prediction, and search.
MIT press, 2000.

Verma, T. S. and Pearl, J. On the equivalence of causal models. arXiv preprint arXiv:1304.1108,
1990.

10

Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. P. Dags with NO TEARS: continuous opti-
mization for structure learning. In Advances in Neural Information Processing Systems 31, pp.
9492–9503, 2018.

11

A Proofs

A.1 Proof of Proposition 1

T -DAG(k, d) ⊂ DAG(k, d) for k < d, where d is the number of vertices and k is the number of
types.

Proof. By definition, a t-DAG is a DAG, so we know that T -DAG(k, d) ⊆ DAG(k, d).
Since k < d, by the pigeonhole principle, at least two vertices have the same type. We claim that two
vertices of the same type cannot be linked by an edge. To show the claim is true, letDt be a consistent
t-DAG, and assume without loss of generality that v1, v2 ∈ V and T (v1) = T (v2) = a ∈ T . For the
sake of contradiction, assume further that a t−→ a. Then we have that:

E(a, a) = {(vi, vj) ∈ E|T (vi) = a, T (vj) = a}.

This means Dt contains both edges v1 → v2 and v1 ← v2, contradicting the fact that Dt is consistent.

Therefore, when k < d, the space of consistent t-DAGs will exclude at least some DAGs that are in
the space of DAGs, giving us the strict subset T -DAG(k, d) ⊂ DAG(k, d).

A.2 Proof of Proposition 2

Let D∗t and D∗ be, respectively, the t-essential and essential graphs of an arbitrary consistent t-DAG
Dt. Then, Dt ⊆ D∗t ⊆ D∗.

Proof. It is clear that Dt ⊆ D∗t and Dt ⊆ D∗ since D∗t and D∗ are obtained by undirecting edges
from Dt. Also, since enforcing type consistency can only orient more edges in D∗, we have that
D∗t ⊆ D∗.

A.3 Proof of Proposition 3

For any consistent t-DAG Dt, we have |Mt(Dt)| ≤ 2u, where u is the number of undirected t-edges
in D∗t , the t-essential graph of Dt.

Proof. A t-essential graph is the union of consistent t-DAGs. First, note that we do not have to
consider every edge of a consistent t-DAG independently since, by consistency, we have that all the
edges included in a t-edge of Dt will always take the same orientation. Thus, if a t-edge is undirected
in D∗t , it means that there exists at least one consistent t-DAG in Mt(Dt) for each orientation of
the t-edge. Since each of the u undirected t-edges can take on two directions, there are 2u possible
combinations. Note that this is only an upper bound — some of these orientations are not part of the
equivalence class, since they create either a cycle or new immoralities not present in Dt.

A.4 Proof of Proposition 4

If a consistent t-DAG Dt contains vertices a1, a2, b1 with types T (a1) = T (a2) = a and T (b1) = b,
with edges a1 ← b1 → a2, then the t-edge b t−→ a is directed in the t-essential graph, i.e., the direction
of causation between types b and a is known.

Proof. To prove the statement we show that among all possible orientations b t−→ a, b t←− a, and
b

t←→ a of the t-edge, the last two are not valid.

For the sake of contradiction, first assume b t←− a is directed in the t-essential graph of Dt. This
means that there exists a consistent t-DAG D1, having t-edge b t←− a, that is Markov equivalent to Dt.
Recall that two graphs are Markov equivalent if and only if they have the same skeleton and the same
immoralities (Verma & Pearl, 1990). Given that b t←− a, then D1 has the structure a1 → b1 ← a2,
which forms an immorality. But since Dt does not contain this immorality, this contradicts the fact
that D1 is Markov equivalent to Dt.

12

Now, suppose that b t←→ a is not directed in the t-essential graph of Dt. This means that there exist
two consistent t-DAGs D1 and D2 that are Markov equivalent to Dt, having the t-edge orientations
b

t←− a and b t−→ a, respectively. As per the argument in the previous case, the existence of D1 leads
to a contradiction.

Therefore, the only possible orientation for the types a and b is b t−→ a.

A.5 Proof of Theorem 1

Let (Dn
t)
∞
n=0 be a random sequence of growing t-DAG as defined in Definition 8. Then the size of

the t-MEC converges to 1 exponentially fast, i.e., there exist a C and n0 such that for all n > n0,
P (|Mt(D

n
t)| > 1) < Ce−rn,

where r = − 1
2 max(ln(1− pjpij), ln(1− pi)).

Proof. To demonstrate this, first recall that the t-MEC shrinks every time we orient a t-edge (Proposi-
tion 3). In addition, Proposition 4 tells us that we can orient a t-edge if we observe a two-type fork
structure. Therefore, proving the theorem is equivalent to showing that, as n goes to infinity, and for
an arbitrary pair of types ti and tj with pij > 0, the probability of observing a two-type fork structure
converges to 1. Our proof relies on the fact that as n grows, the number of types k remains constant.

Case k = 1: Let Dn
t = (V n, En) be a random t-DAG. If Dn

t has vertices of only one type (i.e.,
k = 1), then Dn

t is a set of disconnected vertices; hence |Mt(D
n
t)| = 1 and the theorem holds.

Case k ≥ 2: Let Fij represent the event of observing a two-type fork structure of type ti and tj .
Our aim is to bound this probability from below and show that it converges exponentially fast to 1
as n→∞. We split our search into two steps. Let Y n/2i be the number of vertices of type ti after
observing the first n/2 vertices in the topological ordering induced by Dn

t . Then, we have:

P
(
Y
n/2
i ≥ 1

)
= 1− Bn/2pi (0), (1)

where Bnq (k) is the Binomial distribution of k success out of n trials with probability q. In the second
step, we search for at least two vertices of type tj that are direct causes of vi, the first vertex of type
ti found in the first step. Let Wn/2

ij be the count of such vertices among the last n/2 vertices, and let
qij = pjpij be the probability of sampling a vertex of type tj and connecting it to vi. Then, we have:

P
(
W

n/2
ij ≥ 2

)
= 1− Bn/2qij (0)− Bn/2qij (1) (2)

Combining these two steps, we have:
P (Fij |n) (3)

≥ P
(
Y
n/2
i ≥ 1

)
P
(
W

n/2
ij ≥ 2

)
=
(
1− Bn/2pi (0)

)(
1− Bn/2qij (0)− Bn/2qij (1)

)
≥ 1− Bn/2qij (0)− Bn/2qij (1)− Bn/2pi (0).

The last inequality arises from the fact that the remaining terms are strictly positive. Now, we look at
the probability of this event not happening:

P (¬Fij |n) (4)

≤ Bn/2qij (0) + Bn/2qij (1) + Bn/2pi (0)

= (1− qij)n/2 + (1− pi)n/2 + n
2 qij(1− qij)

n/2−1.

Using α := (1− qij), β := (1− pi), and m = n/2, we can rewrite as follows:

P (¬Fij |n) ≤ αm + βm +m(1− α)αm−1 (5)

= βm + αm
(
1 +m (1−α)

α

)
= em ln β + em lnα

(
1 +m (1−α)

α

)

13

t-DAGa) b) Algorithm output c) t-essential graph

a1 a2

c1

a3

b1

c2

a4

b2

c3

a1 a2

c1

a3

b1

c2

a4

b2

c3

a1 a2

c1

a3

b1

c2

a4

b2

c3

Figure 4: An example where the algorithm would not orient some edges oriented in the t-essential
graph. In this case, the orientation of the t-edge is forced by the fact that the reverse orientation would
either create a cycle or a new immorality. (a) The original t-DAG, (b) the algorithm output (which is
supposed to be equal to the t-essential graph), (c) the ground-truth t-essential graph

Since β ∈ (0, 1), and α ∈ (0, 1), this converges to 0 as m → ∞. Now, we look at the 2 different
convergence rates for α and β.

Rate 1. Assume lnβ > lnα, there exist constants C0 and m0 such that for all m > m0:

em ln β + em lnα
(
1 +m (1−α)

α

)
≤ C0e

m ln β

⇒em(lnα−ln β) ≤ C0 − 1

1 +m 1−α
α

. (6)

Since lnα− lnβ < 0, this is true for C0 = 2 and m0 sufficiently large.

Rate 2. Assume that lnβ ≤ lnα, there exist constants C1 and m1 such that for all m > m1:

em ln β + em lnα
(
1 +m (1−α)

α

)
≤ C1e

m
1
2 lnα

⇒em(ln β− 1
2 lnα) + em

1
2 lnα

(
1 +m (1−α)

α

)
≤ C1,

Since lnβ − 1
2 lnα < 0, and lnα < 0, this is true for C1 = 1 and m1 sufficiently large.

Combining the two rates. By combining the 2 rates, and the fact that m = n/2, we have that
P (|Mt(D

n
t)| > 1) converges exponentially fast to 0 with rate r as follows:

r ≥ 1
2 min(− 1

2 lnα,− lnβ)

= − 1
2 max(ln(1− pipij), ln(1− pi)).

B Additional counterexamples

In this section, we give two additional examples where the algorithm without the enumeration
presented in Section 5 would not orient some edges that are oriented in the t-essential graph.

Our first example is interesting because it shows that in order to decide the orientation of a t-edge
sometimes several t-edges (possibly not local) have to be considered simultaneously. The second
counterexample shows that looking only for the direct parent or child of a t-edge is not always
sufficient.

The first example is presented in Fig. 4. Note that vertices denoted by the same letter have the
same type. The algorithm orients the t-edge a t−→ c since one of its edges in the t-DAG is part of an
immorality. All other edges are unoriented because they are not covered by any rules. However, in
the t-essential graph (see Fig. 4 c) the t-edge b t−→ c is oriented. To see why this is the case, consider
the four possible orientations of the t-edges a t←→ b and b t←→ c (recall that an orientation cannot
create a cycle or a new immorality):

1. a t−→ b, b t−→ c possible.

14

t-DAGa) b) Algorithm output c) t-essential graph

a1 a2

b1 b2

a1 a2

b1 b2

a1 a2

b1 b2

Figure 5: A second example where the algorithm would not orient some edges oriented in the
t-essential graph. In this case, the orientation of the t-edge is forced by the fact that the reverse
orientation would create a new immorality. (a) The original t-DAG, (b) the algorithm output (which
is supposed to be equal to the t-essential graph), (c) the ground-truth t-essential graph

2. a t−→ b, b t←− c impossible (creates an immorality that is not present in the original t-DAG).

3. a t←− b, b t−→ c possible.

4. a t←− b, b t←− c impossible (creates a cycle).

In the two configurations that are possible, the t-edge b t←→ c is always oriented as b t−→ c. Thus, this
is an essential edge that should have been recovered by the algorithm.

The second example is presented in Fig. 5. The dashed line between a1 and a2 represents a path
that does not contain oriented edges in the t-essential graph. Thus, the t-DAG does not contain any
immorality. Without loss of generality, let us consider the dashed line as a chain a1 ← c1 ← c2 ← a2.
The algorithm does not orient any t-edges because they are not covered by any rules. However, in
the t-essential graph (see Fig. 5 c) the t-edge a t−→ b is oriented. Consider the impossible orientation
a

t←− b. By construction, the t-DAG contains no immorality. Thus, let us orient the edges of the
chain as a1 ← c1 ← c2 ← a2 or a1 → c1 → c2 → a2. In both cases, a new immorality is created
(respectively, b1 → a1 ← c1 and c2 → a2 ← b2) leading to a contradiction. Thus, the t-edge has to
be oriented as a t−→ b.

15

	Introduction
	Problem formulation
	Related works
	Typed directed acyclic graphs
	Assumptions on type interactions
	Equivalence classes for consistent t-DAGs
	Space of consistent t-DAGs and size of t-MEC

	An algorithm to find the t-essential graph
	Identification for random graphs
	Experiments
	Discussion
	Proofs
	Proof of prop:tdagspace
	Proof of prop:essentialsubset
	Proof of prop:random-tmec-ubound
	Proof of prop:mickeymouse
	Proof of thm:tmecconvergence

	Additional counterexamples

