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Abstract

In healthcare, treatment effect estimates from randomized controlled trials for
binary outcomes are often reported on a relative scale using the odds-ratio. To
weigh potential benefits and harms of treatment this odds-ratio has to be translated
to a difference in absolute risk, preferably on an individual patient level. Under
the assumption that the relative treatment effect is fixed, treatments have widely
varying effects on an absolute risk scale for patients with different untreated risk.
We investigate whether an estimate of the relative treatment effect from randomized
trials can be exploited for estimating the treatment effect on an absolute risk
scale conditional on covariates in the presence of unobserved confounding using
treatment offset models. We first demonstrate for a simple example that this is
not the case. We then investigate the magnitude of the resulting confounding
bias using numerical experiments based on a binary confounder. We find that for
virtually all plausible confounding magnitudes estimating the conditional average
treatment effect using offset models is more accurate than assuming a single
absolute treatment effect whenever the observed conditional association between
the covariates and the outcome in the observational data is large enough. Finally,
we evaluate a neural network-based offset model on a task with real-world medical
images and simulated outcome data and find that the offset model performs well.

1 Introduction

In healthcare, treatment effect estimates from randomized controlled trials for binary outcomes are
often reported on a relative scale using the odds-ratio (e.g. Furie et al. (2020); Simonovich et al.
(2021); Lean et al. (2018)). This implicitly assumes that this single odds-ratio holds for all patients
included in the trial population. To weigh potential benefits and harms of treatment for an individual
patient, this odds-ratio has to be translated to a difference in absolute risk, preferably conditional
on characteristics of the patient. Under the assumption that the relative treatment effect is fixed,
treatments have widely varying effects on an absolute risk scale depending on the untreated risk of a
patient (for an illustration, see Figure 1).

For instance, assume that a cholesterol lowering drug reduces the risk of cardiovascular death within
the next 10 years by 50%. A 60 year-old male smoker with hypertension and raised cholesterol has
an untreated risk of cardiovascular death of 40% and should expect a reduction in risk of 20% points.
A 50 year-old female without hypertension has an untreated risk of under 1% and will have a less
than 0.5% points reduction in risk. Given these widely different effects on an absolute probability
scale, one may recommend the cholesterol lowering drug to the 60-year old male but not the 50-year
old female. Models that predict the difference in outcomes between two treatments conditional on
covariates are conditional average treatment effect (CATE) models.
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Figure 1: Treatments with a fixed effect on a log-odds scale have varying effects on an absolute risk
scale (CATE := π1 − π0) depending on the untreated risk (π0) of the patient.

Several previous studies on breast cancer patients used the assumption of a fixed relative treatment
effect to develop CATE models from observational data using treatment offset models (Candido dos
Reis et al., 2017; Ravdin et al., 2001; Alaa et al., 2021). The purpose of these models is to help
determine whether it is beneficial to give chemotherapy after surgical removal of the breast tumor.
Using treatment effect estimates from randomized controlled trials on a relative scale, these models
estimate the absolute survival probability under chemotherapy or no chemotherapy. After the models
were found to be accurate in observational validation studies, treatment guidelines acknowledged a
place for these models in clinical decision making (Cardoso et al., 2019; Gradishar, 2021). In these
models it is implicitly assumed that a fixed relative treatment effect allows one to estimate a CATE
model from observational data even in the presence of unobserved confounding. However, whether
this is correct has not been verified rigorously.

In addition, in recent years there has been much interest in the application of neural networks to
unstructured data such as medical images for improving prognosis predictions. Though there have
been studies on estimating treatment effects using neural networks (e.g. Shalit et al. (2017); Shi et al.
(2019)), including from medical images (van Amsterdam et al., 2019), the fixed treatment effect
assumption has not been applied to neural network based models for unstructured data.

In this work, we evaluate the validity of the assumption that a fixed relative treatment effects allows
for CATE estimation in the presence of unobserved confounding using offset models. We find that
this is not the case, but in numerical experiments the bias was low enough that using offset models
still leads to better estimation of the individual risk reduction associated with treatment compared
with the baseline of assuming a single risk difference for all patients. We then use offset models on a
task with medical images using convolutional neural networks and find that the models work well.

2 Methods

We consider models that predict the absolute difference in probability of a binary outcome y under
two possible treatments conditional on some pre-treatment covariate vectorw. This is the conditional
average treatment effect (CATE), conditional on w:
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CATE(w) := p(y = 1|do(x = 1),w)− p(y = 1|do(x = 0),w) (1)

We assume that the relative treatment effect βx on a log odds-ratio scale is known from randomized
trials. Odds are defined relative to a probability π as odds(π) = π

1−π . The odds-ratio of two
probabilities π0, π1 is defined as OR(π0, π1) := odds(π0)/odds(π1). Writing πx′(w′) = p(y =
1|do(x = x′),w = w′), the assumption that the odds-ratio of the outcome under treatment or
no treatment is constant implies that for any two values w0,w1 of w, OR(π0(w0), π1(w0)) =
OR(π0(w1), π1(w1)). Or equivalently, the log-odds of the outcome under do(x = 1) versus
do(x = 0) differ by a constant βx. Introducing η(x,w) as the log-odds of the outcome, the
assumption implies that for each x′,w′:

η(do(x = x′),w = w′) = β0(w
′) + βxx

′ (2)

Where β0(w) is the log-odds of the outcome in the group with do(x = 0) as a function ofw. Denote
σ(x) = 1

1+e−x the sigmoid function such that σ(log odds(π)) = π, we can now write the CATE in
terms of η:

CATE(w) = σ(η(1,w))− σ(η(0,w)) (3)

A fixed term in a model that is not estimated from data is called an offset term (Watson, 2007). We
therefore refer to models of the from of Equation 2 as treatment offset models or offset models for
short.

2.1 Estimating offset models

Given the form of the log-odds ratio in Equation 2 and the assumption that βx is given a priori, offset
models can be estimated with likelihood based approaches by specifying a parametric model for
β̂0(w,θ). The full model is then given by η̂(x,w,θ) = β̂0(w,θ) + βxx. In the case of logistic
regression, β̂0(w,θ) = θ0 + θww. However, β̂0(w,θ) may also be a more flexible function, for
example a convolutional neural network when w is an image.

2.2 Identification

We assume the Acyclic Mixed Directed Graph (AMDG) with observed covariate W and unobserved
confounder U presented in Figure 2.

Y

W

X

U

Figure 2: Acyclic Mixed Directed Graph with observed nodes X,W, Y and unobserved confounder
U

To prove that the CATE is identified it is sufficient to prove that p(y = 1|do(x = x′),w = w′)
is identified for all x′,w′. Due to the unobserved confounder U in the AMDG, p(y = 1|do(x =
x′),w = w′) is not identifiable from observational data in general. The question is whether the
additional assumption of a fixed relative treatment effect as stated in Equation 2 is sufficient for
w-conditional causal effect identification from observational data when U is not observed. The
assumption implies that our query is identified when β0(w) is identified, as p(y = 1|do(x = 0),w =
w′) = σ(β0(w

′)) and p(y = 1|do(x = 1),w = w′) = σ(β0(w
′) + βx) and βx is given a priori by

assumption.
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2.2.1 Non-collapsibility

An important consideration for offset models is the difference between the marginal odds-ratio and
the conditional odds-ratio. In a sufficiently large randomized controlled trial where treatment x is
randomized and covariate w is observed, two different models may be estimated:

p(y = 1|do(x = x′)) = σ(γ0 + γxx
′) (4)

p(y = 1|do(x = x′),w = w′) = σ(β0(w
′)) + βx(w

′)x′ (5)

In contrast with linear models, even when βx(w′) = βx (meaning that the fixed relative treatment
effect assumption holds), in general βx 6= γx. This means that the log odds-ratio that denotes
the treatment effect is different whether the model conditions on the covariate w. This property
is called non-collapsibility (Burgess, 2017). To illustrate non-collapsibility, consider the extreme
example with binary w where p(y = 1|do(x = {0, 1}), w = 0)) = {0.01, 0.02} and p(y =
1|do(x = {0, 1}), w = 1)) = {0.98, 0.99}. For both w ∈ {0, 1}, the w-conditional odds-ratio
βx ≈ 2.0. However, when grouping patients with different values of w together we see that
p(y = 1|do(x = {0, 1}) = {0.495, 0.505}, thus the marginal odds-ratio γx ≈ 1.0. In the majority
of randomized controlled trials the marginal odds ratio eγx is estimated. If γx 6= βx the trials do not
provide the information required to use the offset method as defined in Equation 2. As it turns out, the
stronger the effect of w on the outcome, the greater the difference between γx and βx becomes. This
is an important drawback, as at the same time, the stronger the effect of w on the outcome, the more
potential benefit the offset method has to offer for improving conditional average estimates. Later we
discuss potential solutions for this issue but in our experiments we will use either βx or γx directly.

2.3 Metric

The goal of the conditional average treatment effect models is to estimate the difference in outcome
probability under the hypothetical interventions of treatment or no treatment. A common metric
in this case is the ‘Precision in Treatment Effect Heterogeneity" (PEHE, Hill (2011)). The PEHE
is the root-mean-squared error of the predicted difference in outcome probability versus the actual
difference in outcome probability. If π1(w), π0(w) denote the actual outcome probabilities under
the hypothetical intervention of treatment or no treatment conditional on w, and π̂1(w), π̂0(w) the
predicted probabilities, the PEHE is defined as:

PEHE =

√√√√ 1

N

N∑
i

((π1(wi)− π0(wi))− (π̂1(wi)− π̂0(wi)))2

3 Related Work

Estimating individual treatment effects from observational data requires assumptions. The assumption
of unconfoundedness enables treatment effect estimation from observational data but this assumption
is often not tenable in applications. When unconfoundedness does not hold, potential assumptions
that allow for treatment effect estimation are the presence of proxy measurements of unobserved
confounders (Kuroki and Pearl, 2014; Miao et al., 2016, 2018; Lee and Bareinboim, 2021; Kallus
et al., 2021; van Amsterdam et al., 2021), or exploiting instrumental variables (Wald, 1940; Amemiya,
1974; Darolles et al., 2011; Hartford et al., 2017; Puli and Ranganath, 2020). These methods have
been extended to neural network architectures e.g. in Kallus et al. (2021); Hartford et al. (2017); Puli
and Ranganath (2020).

There are medical examples of the presented assumption of a fixed relative treatment effect for linear
logistic models or survival models. Medical examples are based on breast cancer (PREDICT v2.0,
Candido dos Reis et al. (2017), Adjuvant! Ravdin et al. (2001) and Adjutorium Alaa et al. (2021)),
or cardiovascular disease (Xu et al., 2021). Our contribution is that we investigate the validity of
the assumption that a fixed treatment effect allows for treatment effect estimation in the presence of
unobserved confounding, and that we extend this assumption to the model class of neural networks.
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4 Theory & Experiments

We evaluate the validity of estimating CATE models from observational data using offset models
in the presence of unobserved confounding. First, we study a simple example where the expected
log-likelihood is available in closed form. In this example we find that in the presence of confounding,
offset models do not estimate the ground truth interventional distribution. We then study the magnitude
of the resulting bias for a wide range of confounding magnitudes and find that the bias is small in
many cases. As the baseline situation for CATE models is using a single average treatment effect for
all patients, we study in what situations offset models can still have better PEHE than the baseline,
despite the bias in the offset model. Finally, we test the offset method on a task with real-world
medical images and simulated outcome data and find that it outperforms the baseline and other
competing methods.

4.1 Binary confounder

A simple example compatible with Figure 2 and Equation 2 is where u is binary and β0(w) = β∗0 for
all w. Denoting B as the Bernoulli distribution, pu = p(u = 1) and πxu = p(y = 1|x, u), then the
data-generating mechanism for this example is:

u ∼ B(pu), x ∼ B(p(x = 1|u = u)), y ∼ B(πxu) (6)

In the Appendix A.1 we derive a closed-form expression for the expected log-likelihood L(β0) =
Epobs(y,x,u)[l(y, π̂(x, u, β0)] under the observational distribution in this example. Taking the derivative
with respect to parameter β0 and plugging in the ground truth value for β∗0 we find the following
expression:

∂L

∂β0

(
β0 = β∗0

)
= pu(1− pu)

[
(π01 − π00) (p(x = 0|u = 1)− p(x = 0|u = 0))+

(π11 − π10) (p(x = 1|u = 1)− p(x = 1|u = 0))
]

In general this expression is non-zero, meaning that the ground truth solution β∗0 is not a stationary
point of the expected log-likelihood. In the case of no confounding (i.e. πx0 = πx1 or p(x =
x′|u = 1) = p(x = x′|u = 0)) this expression is zero and β∗0 is a stationary point of the expected
log-likelihood.

To evaluate the amount of bias we parameterize the magnitude of confounding using log odds-ratios
βu→x, βu→y so that p(x = 1|u) = σ( 12βu→x(1 − 2u)) and p(y = 1|x, u) = σ( 12 (βx(1 − 2x) +
βu→y(1−2u))). As there is no closed-form solution of the gradient L(β0) we plot the log-likelihood
profile for different values of βu→x = βu→y in Figure 3. Even in extreme cases of confounding
when βu→x = βu→y = log 10, the difference between the minimum of the expected negative log-
likelihood profile in the observational setting is very close to the minimum of the expected negative
log-likelihood of in the randomized trial setting where there is no confounding. This indicates that
the bias induced by the unobserved confounder u is small when the assumptions hold and the offset
method is used.

4.2 Binary confounder and binary covariate

The bias induced by the confounding in the simple example seems minor even for extreme magnitudes
of confounding. However, the ultimate metric is whether the PEHE of the offset model is better than
that of the baseline of using a single average treatment effect for each patient. To investigate this we
extended the simple example by introducing a single binary covariate w with non-zero effect on the
outcome. The updated data generating mechanism is:

u ∼ B(pu), x ∼ B(p(x = 1|u = u)), w ∼ B(pw), y ∼ B(πxwu) (7)

where

πxwu = p(y = 1|x,w, u) = σ(
1

2
(βx(1− 2x) + βw(1− 2w) + βu→y(1− 2u))) (8)
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Figure 3: Expected log-likelihood profiles of β0 for different magnitudes of confounding, indexed by
ORu→x = ORu→y , the odds-ratios from confounder u to treatment x and outcome y respectively

Figure 4: PEHEs for different strategies, indexed by ORu→x = ORu→y, the odds-ratios from
confounder u to treatment x and outcome y respectively. The shaded areas indicate whether the
chosen approach improves upon the baseline of assuming a single predicted difference in outcome
for all patients.

4.2.1 Numerical experiments

For each value of βw, βu→x, βu→y as in Equation 8 the baseline PEHE is calculated. This value is
contrasted with (1) the PEHE of the ideal ground truth model based on data from a randomized trial
where prct(x = 1|u = 0) = prct(x = 1|u = 1) = prct(x = 1), (2) a logistic regression model where
both βx, βw are estimated from observational data, (3) an offset model where βw is estimated while
plugging in the ground truth β∗x as obtained by the randomized trial in (1), and (4) the marginal model
where the marginal γx is available from randomized controlled trials and is used as an offset in place
of βx. For these experiments we set βu→x = βu→y = βu to four different values and varied βw. As
seen in Figure 4, the PEHE of the observational logistic regression model becomes worse than the
baseline for higher magnitudes of confounding. Also, for ÔRw = eβ̂w > 1, the PEHE of the offset
model is better than that of the baseline, except in the case of extreme confounding (βu = log 10).
These results hold both when the oracle value of βx is used or when the marginal log-odds ratio γx is
used, though the latter performs worse when the βw becomes stronger. However, the marginal offset
model using γx is still better than the baseline whenever the oracle offset model using βx is better
than the baseline.

4.3 Lung nodules

To evaluate offset models on real-world images of lung nodules we used the open source LIDC-IDRI
data-set (Armato et al., 2015). The process of creating semi-synthetic data using this data-set was
described before in van Amsterdam et al. (2019). The LIDC-IDRI data-set consists of chest computed
tomography (CT) scans of 1018 patients with one or more pulmonary nodules per patient. A CT-scan
consists of multiple slices of images. Each nodule is visible on one or more CT-slices. Based on
manual delineations from experts, a small region of 7mm around the nodule was extracted on each
slide on which a nodule appeared. These segmentations are provided with the LIDC-IDRI data-set.
On each slice, two measurements were taken from the nodule in the region defined by the delineation:
the size of the nodule (measured in mm2) and the heterogeneity of the intensity of the pixels in the
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Figure 5: Four pulmonary nodules differing in size (top to bottom) and heterogeneity (left to right)

nodule measured as variance of the pixel intensities. For examples of nodules of differnet size and
heterogeneity Figure 5. Both measurements were transformed using a Yeo-Johnson transformation
so that their distributions resemble a standard normal distribution more closely. This results in a stack
of 6568 images of lung nodules with associated measurements. The images were split randomly in a
train (5000), tune (500) and test set (1068) for the experiments.

Outcome data were simulated conditional on two observed ‘covariates’ w1, w2 that represent size
and heterogeneity of the nodules respectively and with a normally distributed confounder u. This
ensures a statistical association between the size and heterogeneity of the nodules in the images and
the simulated treatment and outcome variables. Denoting the Gaussian distribution as N , the full
data generating process is given below.

image ∼RandomUniformDraw(ImageStack)
w1, w2 =MeasureSizeAndHeterogeneity(image)

u ∼N (0, 1)

x ∼B(σ(u))
y ∼B(σ(x+ w1 + w2 + u))

We compared three neural network methods.

As a first baseline we used TARNet (Shalit et al., 2017), which attaches two ‘heads’ based on a single
representation, one for each treatment arm. As a second baseline we implement a convolutional
neural network that instead of two separate heads has a single learnable parameter from treatment x
to the log-odds of the outcome (Learnable-βx). This variant also exploits the assumption that there is
a constant difference in log-odds between the treated and untreated groups but estimates this relative
treatment effect from the data. We implement the offset method using a convolutional neural network
with a single output layer that uses a fixed offset depending on the treatment variable as in Equation
2. The marginal odds-ratio eγx was calculated from each simulated dataset to emulate the setting
where only the marginal treatment effect is known from a randomized controlled trial. All neural
networks used the same convolutional encoder architecture for a fair comparison. Details on the
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exact architectures are presented in the Appendix A.2. All experiments were repeated 10 times with
different random seeds.

We report the PEHE over 10 independent realizations of simulations with an unobserved confounder
in Table 1. Only Offset improves the estimation of the CATE. The other methods perform worse than
the baseline of predicting a fixed absolute treatment effect for all patients.

model baseline PEHE difference sd
TARNet 0.101 0.485 0.384 0.023
Learnable-βx 0.101 0.164 0.063 0.011
Offset 0.101 0.082 -0.019 0.002

Table 1: Results on image experiments in the presence of unobserved confounding, averaged over 10
different random seeds

5 Conclusion

We evaluated whether the offset method provides valid conditional average treatment effect estimates
in the presence of unobserved confounding and applied this method to numerical and image data.
Though not exact, the offset method may still have better PEHE than the baseline of using the average
treatment effect for all patients even for large confounding magnitudes. In our numerical experiments,
this holds even if an estimate of the marginal odds-ratio is used from randomized trials instead of the
conditional odds-ratio.

A limitation of our work is the relatively limited set of experiments. In all our experiments w was
marginally independent of x, u. Future work could experiment with different functional relationships
between the variables. An important question for practical applications is when it is valid to assume
that the relative treatment effect is indeed fixed, meaning that βx does not depend on w.

There may be better ways to incorporate prior knowledge from randomized trials in the form of
estimates of γx. Given an estimate β̂x of βx, the implied marginal odds-ratio γ̂x(β̂x) can be calculated
as a deterministic function of β̂x and the observed data. The marginal odds ratio estimate from a
randomized trial with associated uncertainty could be used as a conditioning criterion or constraint
for this derived implied marginal odds ratio. Also, future work could focus on relative treatment
effect estimates in the form of hazard ratios. Finally, if there are randomized trials available where
the relevant covariates w are measured but the trials are too small to estimate the entire conditional
treatment effect model, a targeted maximum likelihood approach could be used to estimate the
conditional odds ratio βx while treating the β̂0(w) function as a nuisance parameter. We leave these
extensions for future work.
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A Appendix

A.1 Identification

We now prove that the assumption expressed in Equation 2 is not sufficient for identifying the interventional
distribution p(y = 1|do(x = x′),w = w′) from observational data using a simple example where all
variables are binary and β0(w′) = β∗0 for all w′. We first derive an expression for the expected log likelihood
L(β0) = Epobs(y,x,u)[l(y, π̂(x, u, β0)] under the observational distribution in this example. Writing

pu =p(u = 1)

px′u′ =p(x = x′, u = u′) = p(x = x′|u = u′)p(u = u′)

πx′u′ =p(y = 1|x = x′, u = u′)

Then the data generating mechanism is:

u, x ∼ B(px′u′), y ∼ B(πxu)

The ground truth solutions for β∗0 and β∗x are:

p(y|do(x = 0)) = (1− pu)π00 + puπ01 = σ(β∗0 )

p(y|do(x = 1)) = (1− pu)π10 + puπ11 = σ(β∗0 + β∗x)

The Bernoulli log-likelihood is

l(y|x, β0, βx) = y log σ(β0 + βxx) + (1− y) log(1− σ(β0 + βx))

Here βx is assumed fixed and β0 is the only parameter, resulting in the following expression for L(β0):

L(β0) =p00 [π00 log σ(β0) + (1− π00) log(1− σ(β0))]
+p01 [π01 log σ(β0) + (1− π01) log(1− σ(β0))]
+p10 [π10 log σ(β0 + βx) + (1− π10) log(1− σ(β0 + βx))]

+p11 [π11 log σ(β0 + βx) + (1− π11) log(1− σ(β0 + βx))]

Taking the derivative with respect to β0 and noting that (log σ(x))′ = 1− σ(x) we arrive at

∂L

∂β0
=p00 [π00(1− σ(β0))− (1− π00)σ(β0)]

+p01 [π01(1− σ(β0))− (1− π01)σ(β0)]

+p10 [π10(1− σ(β0 + βx))− (1− π10)σ(β0 + βx)]

+p11 [π11(1− σ(β0 + βx))− (1− π11)σ(β0 + βx)]

Plugging in the ground truth solutions β∗0 , β∗x and re-arranging we arrive at:

∂L

∂β0

(
β0 = β∗0 , βx = β∗x

)
= pu(1− pu)

[
(π01 − π00) (p(x = 0|u = 1)− p(x = 0|u = 0))+

(π11 − π10) (p(x = 1|u = 1)− p(x = 1|u = 0))
]

If there is no confounding this expression is zero, but in general it is not which means that the ground truth
solution β∗0 is not an optimum of the expected log-likelihood in the observational data distribution.

Of note, the fact that the interventional distribution is not identified does not automatically imply that the CATE is
not identified as there may be another β′0 6= β∗0 such that CATE(β0 = β′0, βx = β∗x) = CATE(β0 = β∗0 , βx =
β∗x). To investigate this, assume that for some β∗0 = a and β∗x = b we have that:
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δ :=CATE(β0 = a, βx = b)

=σ(a+ b)− σ(b)

=
ea+b

1 + ea+b
− ea

1 + ea

We will now prove that this equation has at most two solutions by noting that:

ea+b

1 + ea+b
− ea

1 + ea
=
ea+b(1 + ea)− (1 + ea+b)ea

(1 + ea+b)(1 + ea)

=
ea(eb − 1)

(1 + ea+b)(1 + ea)

Introducing y := ea and cross-multiplying we get:

δ =
y(eb − 1)

(1 + eby)(1 + y)
⇐⇒

δ(1 + eby)(1 + y) = y(eb − 1) =

δ + δ(1 + eb)y + δeby2 = y(eb − 1) ⇐⇒

δeby2 +
(
eb(δ − 1) + δ + 1

)
y + δ = 0

Depending on the values of δ and b this quadratic equation in y has 0, 1 or 2 real-valued solutions, yielding 0, 1 or
2 real-valued solutions for a = log y. This implies that there exists utmost one alternative solution β′0 6= β∗0 such
that CATE(β0 = β′0, βx = β∗x) = CATE(β0 = β∗0 , βx = β∗x). Given the results of the numerical experiments
it is highly unlikely that this coincides with the optimum of the observational expected log-likelihood.

A.2 Neural Network Architectures

The convolutional encoder consisted of 5 layers of 3x3 convolutions with 16 feature channels, followed by a
rectified linear unit activation function and 2x2 max-pooling. The result of this encoding was flattened into a
144-dimensional feature vector that was passed on to the final layer. These decisions were based on earlier work
in van Amsterdam et al. (2019) using the same dataset. This encoder architecture was used for all models. For
Offset and Learnable-βx, the output layer consisted of a single linear layer with a 1D output. For Offset a fixed
offset was added to the predicted log-odds based on the treatment. For Learnable-βx this treatment effect was a
learnable scalar parameter. For TARNet, two linear layers with a single 1D output each were added. Depending
on the value of x one of both heads provided the final prediction. All models yielded log-odds predictions under
hypothetical treatment or no-treatment. In Learnable-βx, the treatment effect parameter was initialized to a
value of 1. In TARNet, the bias of the output of one head was initialized to 0 and the bias of the output of the
other head was initialized to 1. All other parameters were randomly initialized with the default initialization
scheme in PyTorch. PyTorch version 1.7 was used. We used the Adam optimizer with a learning rate of 0.005
and default hyperparameters, the batch size was 200. The total time for all experiments was under 8 hours on a
single NVIDIA P-6000 GPU.

A.3 Image Data and Simulations

The LIDC-IDRI data-set is released on under a Creative Commons Attribution 3.0 Unported License. The
data from LIDC-IDRI stem from seven hospitals. The study was approved by the appropriate Institutional
Review Boards, including the informed consent procedure. The scans were anonymized by removing identifiable
metadata.
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