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Abstract

Discovering causal structures from data is a challenging inference problem of
fundamental importance in all areas of science. The appealing scaling proper-
ties of neural networks have recently led to a surge of interest in differentiable
neural network-based methods for learning causal structures from data. So far,
differentiable causal discovery has focused on static datasets of observational or
interventional origin. In this work, we introduce an active intervention-targeting
mechanism which enables quick identification of the underlying causal structure of
the data-generating process. Our method significantly reduces the required number
of interactions compared with random intervention targeting and is applicable for
both discrete and continuous optimization formulations of learning the underly-
ing directed acyclic graph (DAG) from data. We examine the proposed method
across multiple frameworks in a wide range of settings and demonstrate superior
performance on multiple benchmarks from simulated to real-world data.

1 Introduction

Learning causal structure from data is a challenging but important task that lies at the heart of
scientific reasoning and accompanying progress in many disciplines [45, 22, 31, 29]. While there
exists a plethora of methods for the task, computationally and statistically more efficient algorithms
are highly desirable [21]. As a result, there has been a surge in interest in differentiable structure
learning and the combination of deep learning and causal inference [46]. Such methods define a
structural causal model with smoothly differentiable parameters that are adjusted to fit observational
data [54, 52, 55, 6, 34, 3], although some methods can accept interventional data, thereby significantly
improving the identification of the underlying data-generating process [26, 7, 33]. However, the
improvement critically depends on the experiments and interventions available to the learner.

Despite advances in high-throughput methods for interventional data in specific fields [10], the
acquisition of interventional samples in general settings tends to be costly, technically impossible or
even unethical for specific interventions. There is, therefore, a need for efficient usage of the available
interventional samples and efficient experimental design to keep the number of interventions to a
minimum.

A significant amount of prior work exists in causal structure learning that leverages active learning
and experimental design to improve identifiability in a sequential manner. These approaches are either
graph theoretical [20, 11, 23, 19, 47, 28, 27, 32, 15, 16, 17, 49], Bayesian [38, 50, 36, 9, 39, 2, 53] or
rely on Invariant Causal Prediction [14]. These methods are typically computationally very expensive

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



and do not scale well with respect to the number of variables or dataset size [21]. A promising
alternative is the use of active learning in a continuous optimization framework for causal structure
learning from joint data. However, since the applicability of existing scores / heuristics for selecting
intervention targets is limited for existing frameworks (see §A.1), current approaches rely on random
and independent interventions and do not leverage the acquired evidence from processed experiments.

We thus propose a novel method of active selection of intervention targets that can easily be in-
corporated into many differentiable causal discovery algorithms. Since most of these algorithms
treat the adjacency matrix of the causal graph as a learned soft-adjacency, it is readily available
for parametrized sampling of different hypothesis graphs. Our method looks for an intervention
target that gives maximum disagreement between post-interventional sample distributions under these
hypothesis graphs. We conjecture that interventions on such nodes will contain more information
about the causal structure and hence enable more efficient learning. To the best of our knowledge, our
paper is the first approach to combine both a continuous optimization framework and active causal
structure learning from observational and interventional data. We summarize our contributions as
follows:

• We propose a novel approach for selecting interventions (single and multi-target) which identify
the underlying graph efficiently and can be used for any differentiable causal discovery method.

• We introduce a novel, scalable two-phase DAG sampling procedure which efficiently generates
hypothesis DAGs based on a soft-adjacency matrix.

• We examine the proposed intervention-targeting method across multiple differentiable causal
discovery frameworks in a wide range of settings and demonstrate superior performance against
established competitive baselines on multiple benchmarks from simulated to real-world data.

• We provide empirical insights on the distribution of selected intervention targets and its connec-
tion to the (causal) topological order of the variables in the underlying system.

2 Preliminaries

Structural Causal Model. An SCM [42] is defined over a set of random variables X1, . . . , XM or
just X for short and a directed acyclic graph (DAG) G = (V,E) over variable nodes V = {1, . . .M}.
The random variables are connected by edges in E via functions fi and jointly independent noise
variables Ui through Xi = fi(Xpa(i), Ui) where Xpa(i) are Xi’s parents in G, and directed edges
in the graph represent direct causation. The conditionals P (Xi|Xpa(i)) define the conditional
distribution of Xi given its parents.

Interventions. Interventions onXi change the conditional distribution of P (Xi|Xpa(i)) to a different
distribution, hence affecting the outcome ofXi. Interventions can be perfect (hard) or imperfect (soft).
Hard interventions entirely remove the dependencies of a variable Xi on its parents Xpa(i), hence
defining the conditional probability distribution of Xi by some P̃ (Xi) rather than P (Xi|Xpa(i)). A
more general form of intervention is the soft intervention, where the intervention changes the effect
of the parents of Xi on itself by modifying the conditional distribution from Pi(Xi|Xpa(i)) to an
alternative P̃i(Xi|Xpa(i)).

Dependency Structure Discovery from Interventions (DSDI). We evaluate the proposed method
under multiple continuous-optimization causal learning frameworks from fused (observational and
interventional) data [5], one of them being DSDI [26]. The work of DSDI reformulates the problem
of causal discovery from discrete data as a continuous optimization problem using neural networks.
The framework proposes to learn the causal graph adjacency matrix as a matrix parameter γ of a
neural network, and is trained using a 2-stage procedure with alternating phases of optimization.
The first stage involves sampling graphs under the model’s current belief in the graph structure
and then training functional parameters P specifying the conditionals of the sampled graphs using
observational data. Note how sampling a graph from γ can specify element-wise multiplications by
0 or 1 in the first layer of neural networks for the conditionals, to remove unallowed edges, with
other network parameters P applicable to any sampled graph. The second stage is to evaluate the
sampled graphs under interventional data, scores these graphs accordingly and update the learned
adjacency matrix with the scores. This method performs competitively compared to many other
methods. However, all intervention targets in stage 2 of DSDI are random and independent, a strategy
that scales poorly to larger graphs. A better approach would have been active intervention targeting,
elaborated in the next section.
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(a) AIT procedure for intervention target Ik
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(b) Discrepancy score Dk landscape

Figure 1: (a) Procedure: Start by sampling a set of hypothetical graphs G given the current graph beliefs
γ, and apply an intervention on targets Ik on the functional parameters P which results in partially altered
parameters Pk. Continue by sampling sets of hypothetical interventional experiments under Pk for every graph
in G and compute the corresponding discrepancy score Dk as a ratio of variance-between-graphs VBGk and
variance-within-graphs VWGk. (b) Landscape of the discrepancy score in terms of VBGk and VWGk, in logarithmic
scale.

Differentiable Causal Discovery from Interventional Data (DCDI). We also consider the work
of DCDI [7], which addresses causal discovery from continuous data as a continuous-constrained
optimization problem using neural networks to model parameters of Gaussian distributions or
normalizing flows [44] which represent conditional distributions. Unlike DSDI’s iterative training of
the structural and functional parameters, DCDI optimizes the causal adjacency matrix and functional
parameters jointly over the fused data space. But like DSDI, DCDI uses random and independent
interventions.

3 Active Intervention Targeting
We present a score-based intervention design strategy, called Active Intervention Targeting (AIT),
which is applicable to many discrete and continuous optimization formulations of causal structure
learning algorithms. Furthermore, we show how our proposed method can be integrated into recent
differentiable causal discovery frameworks for guided exploration using interventional data.

Assumptions. The proposed method assumes access to a belief state γ in the graph structure (e.g.,
in the form of a distribution over graphs, probabilistic adjacency matrix or a set of hypothetical
graphs) and functional parameters P characterizing the conditional relationships between variables
(constrained by the graphs sampled from the belief specified by γ). The proposed model does not
have to assume causal sufficiency per se. However, it inherits the assumptions of the selected base
framework, and this may include causal sufficiency depending on the base algorithm of choice. In
case the underlying framework can handle unobserved variables and offers a generative method for
interventional samples, then our method is also applicable

3.1 A score for intervention targeting

Algorithm 1 Active Intervention Targeting (AIT)
Input: Functional Parameters P , Graph Belief State γ,

Interventional Target Space I
Output: Intervention Target Ik∗
1: G ← Sample a set of hypothesis graphs from γ
2: for each intervention target Ik in I do
3: Pk ← Perform intervention Ik on P
4: for each graph Gi in G do
5: Sk,i← Draw samples from Pk on Gi
6: Sk,i← Set variables in Ik to 0
7: end for
8: Compute: Dk ←

∑
i(µ

k
i −µ

k)2∑
i

∑
j(S

k,i
j −µk

i )
2

9: end for
10: Target Intervention Ik∗ ← argmaxk(Dk)

Given a graph belief state γ with its cor-
responding functional parameters P , and
a possible set of intervention targets I
(single-node and multi-node intervention
targets), we wish to select the most in-
formative intervention target(s) Ik∗ ∈ I
with respect to identifiability of the un-
derlying structure. Such target(s) presum-
ably yield relatively high discrepancies
between samples drawn under different
hypothesis graphs, indicating larger un-
certainty about the target’s relation to its
parents and/or children.

We thus construct an F-test-inspired score
to determine the Ik∗ exhibiting the highest
discrepancies between post-interventional sample distributions generated by likely graph structures
under fixed functional parameters P . In order to compare sample distributions over different graphs,
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we distinguish between two sources of variation: Variance between graphs (VBG) and variance within
graphs (VWG). While VBG characterizes the variance of sample means over multiple graphs, VWG
accounts for the sample variance when a specific graph is fixed. As in DSDI and DCDI, we mask the
contribution of the intervened variables Ik to VBG and VWG, and construct our discrepancy score D as
a ratio D = VBG

VWG .

This discrepancy score attains high values for intervention targets of particular interest (see Figure 1b
for a landscape visualization). While VBG itself indicates for which intervention targets the model is
unsettled about, an extension to the proposed variance ratio enables more control over the region of
interest. Given a fixed set of graphs G and a fixed interventional sample size across all graphs, let us
assume a scenario where multiple intervention targets attain high VBG. Assessing VWG allows us to
distinguish between two extreme cases: (a) targets with sample populations that exhibit large VWG
(b) targets with sample populations that exhibit low VWG. While high VBG in (a) might be induced by
an insufficient sample size due to high variance in the interventional distribution itself, (b) clearly
indicates high discrepancy between graphs and should be preferentially studied.

Computational Details. We begin by sampling a set of graphs G = {Gi}, i = 1, 2, 3, . . . from our
graph structure belief state γ, however parametrized. This G will remain fixed for all considered
interventions for the current experimental round. Then, we fix an intervention target Ik and apply the
corresponding intervention to P , resulting in partially altered functional parameters Pk where some
conditionals have been changed. Next, we draw interventional samples Sk,i from Pk on every graph
Gi ∈ G and set variables in Ik to zero to mask of their contribution to the variance. Having collected
all samples over the considered graphs for the specific intervention target Ik, we compute VBGk and
VWGk as:

VBGk =
∑
i

(µk
i − µk)2 and VWGk =

∑
i

∑
j

(Sk,i
j − µ

k
i )

2

where µk is a vector of the same dimension as any sample in S and denotes the overall sample-mean
of the interventional setting, µk

i the corresponding mean for a specific graph Gi and Sk,i
j is the j-th

sample of the i-th graph configuration. Finally, we construct the discrepancy score Dk of Ik as:

Dk ←
VBGk
VWGk

.

In contrast to the original definition of the F-Score, we can ignore the normalization constants due to
equal group size and degree-of-freedoms. Although the dependence between the variables is apparent
from the connected causal structure, we approximate the variance of the multidimensional samples as
the trace over the covariance matrix by assuming that the variables are independent. An outline of the
method is provided in Algorithm 1.

3.2 Two-Phase DAG sampling

Embedding AIT into recent differentiable causal discovery frameworks requires a graph sampler
which generates a set of likely graph configurations under the current graph belief state. However,
drawing samples from unconstrained graphs (e.g. partially undirected graphs or cyclic directed
graphs) is an expensive multi-pass process. Here, we thus constrain our graph sampling space to
DAGs. Since most differentiable causal structure learning algorithms learn edge beliefs in the form
of a soft-adjacency matrix, we present a scalable, two-stage DAG sampling procedure which exploits
structural information of the soft-adjacency matrix beyond independent edge confidences (see Figure
2 for a visual illustration). More precisely, we start by sampling topological node orderings from
an iterative refined score and construct DAGs in the constrained space by independent Bernoulli
draws over possible edges. We can thus guarantee DAGness by construction and do not have to rely
on expensive, non-scalable techniques such as rejection sampling or Gibbs sampling. The overall
method is inspired by topological sorting algorithms of DAGs where we iteratively identify nodes
with no incoming edges, remove them from the graph and repeat until all nodes are processed.

Soft-Adjacency. Given a learnable graph structure γ ∈ RN×N of a graph over N variables, the soft-
adjacency matrix is given as σ(γ) ∈ [0, 1]N×N such that σ(γij) ∈ [0, 1] encodes the probabilistic
belief in random variable Xj being a direct cause of Xi, where σ(x) = (1 + exp(−x))−1 denotes
the sigmoid function. For the ease of notation, we define A = σ(γ) and Ak denotes the considered
soft-adjacency σ(γ) at iteration k. Note that the shape of Ak changes through the iterations.

Sample node orderings. For the iterative root sampling procedure, we start at iteration k = 0 with
an initial soft-adjacency Ak = A and apply the following routine for N iterations. We take the
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Figure 2: Two-Stage DAG Sampling: Based on a soft-adjacency σ(γ), we sample a topological node ordering
from an iterative refined score which is repeatedly computed until we have processed all nodes of the graph.
We proceed by permuting σ(γ) according to the drawn node ordering and constrain the upper triangular part to
ensure DAGness. Finally, we take independent Bernoulli draws of the unconstrained edge beliefs and arrive at a
sampled DAG.

maximum over rows of Ak, resulting in a vector of independent probabilities pkc , where pkc (i) denotes
the maximal probability of variable Xi being a child of any other variable at the current belief state.
After taking the complement pkr = 1 − pkc , we arrive at pkr where pkr (i) denotes the approximated
probability of variable Xi being a root node in the current state. In order to arrive at a normalized
distribution to sample a root node, we apply a temperature-scaled softmax:

pks(i) = softmax(pkr/t)i =
exp

[
pkr (i)/t

]∑
j exp

[
pkr (j)/t

]
where t denotes the temperature. The introduction of temperature-scaling allows to control the
distribution over nodes and account for the entropy of the structural belief. We proceed by sampling
a (root) node as rk ∼ Categorical(pks) and delete all corresponding rows and columns from Ak

and arrive at a shrinked soft-adjacency Ak+1 ∈ [0, 1](N−k−1)×(N−k−1) over the remaining variables.
We repeat the procedure until we have processed all nodes and have a resulting topological node
ordering ≺ of [r0, ..., rN−1].

Sample DAGs based on node orderings. Given a node ordering ≺, we permute the soft-adjacency
A accordingly and constrain the upper triangular part by setting values to 0 to ensure DAGness by
construction (as shown in Figure 2). Finally, we sample a DAG by independent Bernoulli draws of
the edge beliefs, as proposed in Ke et al. [26].

3.3 Applicability to DSDI

Figure 3: Adapted workflow of DSDI with
Active Intervention Targeting

Before integrating our method into the DSDI framework,
we must choose/design a graph sampler based on DSDI’s
graph belief characterization and define a sampling routine
to generate interventional samples under a given state of
the structural and functional parameters.

DSDI offers a learnable graph structure over N variables
with γ ∈ RN×N such that σ(γ) ∈ [0, 1]N×N encodes the
soft-adjacency matrix. This formulation naturally suggests
the application of the introduced two-phase DAG sampling
to generate hypothetical DAGs under current beliefs. Un-
der these acyclic graph configurations, one may then apply
an intervention to DSDI functional parameters P and sample data using ancestral sampling.

DSDI’s architectural choices allow a seamless integration of our proposed active intervention targeting
into stage 2 of DSDI, where graphs are evaluated using interventional data to update the structural
belief. See Figure 3 for an illustrative description of the adapted workflow and §2 for a compact
description of the base framework.

5



3.4 Applicability to DCDI

DCDI also offers access to γ ∈ RN×N which allows the same setup as with DSDI. In order to generate
interventional samples under the hypothetical graphs, we alter the conditionals of the intervened
variables and perform ancestral sampling based on the model’s learned conditional densities.

Embedding AIT into DCDI allows us to predict an interventional target space instead of relying on
random interventional samples chosen out of the full target space. In contrast to the unconstrained
target space of the original formulation, we estimate a target space of constrained size using AIT and
reevaluate it after a fixed number of gradient steps (see §A.7.1 for technical details).

4 Experiments
We evaluate the proposed active intervention targeting mechanism on single-target interventions
under two different settings: DSDI [26] and DCDI [7]. We investigate the impact of AIT under
both settings for identifiability, sample complexity, and convergence behaviour compared to random
targeting where the next intervention target is chosen independent of the current evidence. In a further
line of experiments, we analyze the targeting dynamics with respect to convergence behaviour and
the distribution of target node selections. This section will highlight our results on DSDI while also
including key results with respect to DCDI (structural discovery and identifiability). However, further
analysis of DCDI results have been shifted to the Appendix.

Evaluation Setup. A huge variety of SCMs and their induced DAGs exist, each of which can stress
causal structure discovery algorithms in different ways. We perform a systematic evaluation over a
selected set of synthetic and non-synthetic SCMs (and datasets). We distinguish between synthetic
structured graphs and random graphs, the latter generated from the Erdős–Rényi (ER) model with
varying edge densities (see §A.3 for a detailed description of the setup). For conciseness, we only
report results on 15-node graphs in this section for the noise-free synthetic setting for AIT on DSDI
and on 10-node graphs for the noisy setting for AIT on DSDI (discrete data). In addition, we report
key results on 10-node graphs for AIT on DCDI (continuous data) in the main text and provide further
results and ablation studies in Appendix. We complete the setup with the Sachs flow cytometry
dataset [45] and the Asia network [31] to evaluate the proposed method on well-known real-world
datasets for causal structure discovery. 1

Key Findings. (a) We report strong results for active-targeted structure discovery on both discrete
and continuous-valued datasets, outperforming random targeting in all experiments. (b) The proposed
intervention targeting mechanism significantly reduces sample complexity with strong benefits
for graphs of increasing size and density. (c) The distribution of target selections during graph
exploration is strongly connected to the topology of the underlying graph. (d) Our method is capable
of identifying informative targets. (e) Undesirable interventions are drastically reduced. (f) When
monitoring structured Hamming distance (SHD) throughout the procedure, an “elbow” point appears
approximately when the Markov equivalence class (MEC) has been isolated. (g) AIT introduces
desirable properties such as improved recovery of erroneously converging edges. (h) AIT significantly
improves robustness in noise-perturbed environments.

Structure discovery: Synthetic datasets. We evaluate accuracy in terms of Structural Hamming
Distance (SHD) [1] on a diverse set of synthetic non-linear datasets under both DSDI and DCDI,
adopting their respective evaluation setups.

The results of DSDI with AIT are reported in Table 1. DSDI with active intervention targeting
outperforms all baselines and DSDI with random intervention targeting over all presented datasets.
It enables almost perfect identifiability on all structured graphs of size 15 except for the full15
graph, and significantly improves structure discovery of random graphs with varying densities. As the
size or density of the underlying causal graphs increases, the benefit of the selection policy becomes
more apparent (see Figure 4). We also examine the effectiveness of our proposed method for DCDI
[7] on non-linear data from random graphs of size 10. Active Intervention Targeting improves the
identification in terms of sample complexity and structural identifiability compared with random
exploration (see Figure 5 and §A.7 for further analyses). We observe the clear impact of the targeting

1
The real-world datasets are available through a Creative Commons Attribution-Share Alike License in the bnlearn R package and most baseline implementations

are available for Python in the causal discovery toolbox [24] with an MIT license. A-ICP is provided at https://github.com/juangamella/aicp but without a
license.

6

https://github.com/juangamella/aicp


0 10000 20000 30000 40000 50000
Steps

0

25

50

75

S
H

D

0 10000 20000 30000 40000 50000
Steps

0.4

0.6

0.8

1.0

%
 o

f c
or

re
ct

 id
en

tif
ie

d 
G

T 
ed

ge
s

(a) ER-1:

0 10000 20000 30000 40000 50000
Steps

0

25

50

75

S
H

D

0 10000 20000 30000 40000 50000
Steps

0.4

0.6

0.8

1.0

%
 o

f c
or

re
ct

 id
en

tif
ie

d 
G

T 
ed

ge
s

(b) ER-2:

0 10000 20000 30000 40000 50000
Steps

0

25

50

75

S
H

D

0 10000 20000 30000 40000 50000
Steps

0.4

0.6

0.8

1.0

%
 o

f c
or

re
ct

 id
en

tif
ie

d 
G

T 
ed

ge
s

(c) ER-4:

Figure 4: DSDI with active intervention targeting (orange) leads to superior performance over random inter-
vention targeting (blue) on random graphs of size 15. The performance gap becomes more significant with
increasing edges density. The plot shows average performance in terms of SHD. Error bands were estimated
using 10 random ER graphs per setting.

Table 1: SHD (lower is better) on various 15-variable synthetic datasets. Structured graphs are sorted in
ascending order according to their edge density. (∗) denotes average SHD over 10 graphs.

Structured Graphs Random Graphs

Chain Collider Tree Bidiag Jungle Full ER-1(∗) ER-2(∗) ER-4(∗)

GES [8] 13 1 12 14 14 69 8.3 (±1.9) 17.6 (±4.6) 39.4 (±6.7)
GIES [18] 13 6 10 17 23 60 10.9 (±4.2) 18.1 (±4.3) 39.3 (±5.6)
ICP [41] 14 14 14 27 26 105 16.2 (±3.6) 31.1 (±3.4) 60.1 (±3.9)
A-ICP [14] 14 14 14 27 26 105 16.2 (±3.6) 31.1 (±3.4) 60.1 (±3.9)

NOTEARS [54] 22 21 26 33 35 93 23.7 (±4.0) 35.8 (±5.2) 59.5 (±3.7)
DAG-GNN [52] 11 14 15 27 25 97 16.0 (±3.7) 30.6 (±3.4) 59.7 (±4.1)

DSDI (Random) [26] 0 0 2 3 7 24 1.4 (±1.6) 2.1 (±2.3) 7.2 (±2.7)
DSDI (AIT) 0 0 0 0 0 7 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)

mechanisms, which control the order and frequency of interventional targets presented to the model.
Further experimental results for DCDI can be found in Appendix.

Table 2: SHD (lower is better) on two real-
world datasets

Sachs Asia

GES [8] 19 4
GIES [18] 16 11
ICP [41] 17 8
A-ICP [14] 17 8

NOTEARS [54] 22 14
DAG-GNN [52] 19 10

DSDI (Random) [26] 6 0
DSDI (AIT) 6 0

Structure discovery: flow cytometry and asia dataset.
While the synthetic datasets systematically explore the
strengths and weaknesses of causal structure discovery
methods, we further evaluate their capabilities on the
real-world flow cytometry dataset (also known as Sachs
network)[45] and the Asia network [31] from the Bn-
Learn Repository. DSDI with active intervention target-
ing outperforms all measured baselines and achieves the
same result as random targeting in terms of SHD, but
with reduced sample complexity. Despite AIT deviating
only by 6 undirected edges from the (concensus) ground
truth structure of Sachs et al. [45], there is some concern
about the correctness of this graph and the different as-
sumptions associated with the dataset [37, 53]. Therefore,
perfect identification may not be achievable by any method in practice in the Sachs setting.

Effect of intervention targeting on sample complexity. Aside from the significantly improved
identification of underlying causal structures, our method allows for a substantial reduction in
interventional sample complexity. After reaching the “elbow” point in terms of structural Hamming
distance, random intervention targeting requires a fairly long time to converge to a solution within the
MEC. In contrast, our proposed technique continues to select informative intervention targets beyond
the elbow point and more quickly converges to the correct graph within the MEC. The continued
effectiveness of our method directly translates to increased sample-efficiency and convergence speed,
and is apparent for all examined datasets (see Figure 4).

Distribution of intervention targets. The careful study of the behaviour of the proposed method
under our chosen synthetic graphs enable us to reason about the method’s underlying dynamics.
Analysing the dynamics of intervention targeting reveals that the distribution of target node selections
is linked to the topology of the underlying graph. More specifically, the number of selections of a
given target node strongly correlates with its out-degree and number of descendants in the underlying
ground-truth graph structure (see Figure 7). That our method prefers interventions on nodes with
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Figure 5: AIT-guided DCDI (orange) allows a more rapid discovery of the causal structure compared to DSDI
relying on random interventions (blue). The distribution of selected intervention targets shows its correlated
connection to the topology of the underlying graph where nodes of greater impact on the overall system are
preferentially studied and nodes without children are rarely chosen.

Figure 6: DSDI: Dynamics and target distribution of AIT for a structured jungle graph of size 15. The graphs’
nodes are sorted in topological order, root node first. The graph is binary-tree-like with 4 levels. For the dense
jungle15, the multi-level structure characteristic of the tree-like graph is readily apparent even before the elbow
point. Nodes without children are very rarely chosen.

greater (downstream) impact on the overall system can be most clearly observed in the distribution of
target selection on the example of the synthetic jungle graph in Figure 6.

Selection of informative targets. Apart our strong results in the discovery of the underlying causal
graph, we demonstrate AIT’s general ability of detecting informative intervention targets in a careful
designed empirical study in Appendix §A.6.7.

Reduction of undesirable interventions. An intervention destroys the original causal influence of
other variables on the intervened target variable Ik, so its samples cannot be used to determine the
causal parents of Ik in the undisturbed system. Therefore, if a variable without children is detected,
interventions upon it should be avoided since they effectively result in redundant observational
samples of the remaining variables that are of no benefit for causal structure discovery. Active
intervention targeting leads to the desirable property that interventions on such variables are drastically
reduced (see Figure 5 and 6).

Identification of Markov equivalence class. Investigating the evolution of the intervention target
distribution over time reveals that the causal discovery seems to be divided into two phases of
exploration: Phase 1 lasts until the elbow point in terms of SHD, and Phase 2 from the elbow point
until convergence (see Figure 4). We observed over multiple experiments that phase 1 tends to
quickly discover the underlying skeleton (removing superfluous connections while keeping some
edges undirected), until a belief state γelbow is reached representing a MEC, or a class of graphs very
close to a MEC. Phase 2 is predominantly operating on the partially directed skeleton and directed on
the remaining edges.

Recovery of erroneously converging edges. Recovery of incorrectly-converging edges critically
depends on adapting the order of interventions, which a random intervention policy does not. In sharp
contrast, intervention targeting significantly promotes early recovery from incorrect assignment of
an edge. In contrast, the observed edge dynamics and the corresponding graph belief states indicate
that the random policy can lock itself into unfavorable belief states from which recovery is extremely
difficult, while AIT provides an escape hatch throughout learning.

AIT improves robustness in noise-perturbed environments. Considering that noise significantly
impairs the performance of causal discovery, we examine the performance of active intervention
targeting in noise-perturbed environments with respect to SHD and convergence speed and compare
it with random intervention targeting. We conduct experiments under different noise levels in the
setting of binary data generated from structured and random graphs of varying density. A noise level
η denotes the probability of flipping a random variable and applying it to all measured variables of
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0.30 0.38 -0.29 -0.31 -0.36

(a) Random Targeting

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN15

COLLIDER15

TREE15

BIDIAG15

JUNGLE15

FULL15

ER-1(*)

ER-2(*)

ER-4(*)

0.46 0.98 -0.51 -0.98 -0.98

0.38 0.38 -0.38 -0.38 -0.38

0.96 0.77 -0.41 -0.92 -0.92

0.67 0.97 -0.51 -0.97 -0.97

0.98 0.85 -0.79 -0.97 -0.97

0.93 0.93 -0.93 -0.93 -0.93

0.79 0.79 -0.48 -0.54 -0.59

0.91 0.90 -0.60 -0.73 -0.76

0.96 0.94 -0.78 -0.87 -0.88

(b) Active Intervention Targeting

Figure 7: Correlation scores between the number of individual target selections and different topological
properties of those targets. AIT shows strong correlations with the measured properties over all graphs, which
indicates a controlled discovery of the underlying structure through preferential targeting of nodes with greater
(downstream) impact on the overall system.

(a) η = 0 (b) η = 0.01 (c) η = 0.02 (d) η = 0.05

Figure 8: Convergence Behaviour in terms of SHD for random ER-4 graphs over 10 variables under different
noise levels η, where Active Intervention Targeting (orange) clearly outperforms Random Targeting (blue) over
all noise levels. The performance gap becomes of larger magnitude as the noise level increases. Error bands
were estimated using 3 random ER graphs per setting.

observational and interventional samples. Through all examined settings, we observe that active
intervention targeting significantly improves identifiability in contrast to random targeting (see §A.6.6
for detailed results). Active intervention targeting perfectly identifies all structured graphs, except for
the collider and full graph, up to a noise level of η = 0.05, i.e. where every 20th variable is flipped.
The observed performance boost is even more noticeable in the convergence speed, as shown in Fig.
8 for ER-4 graphs spanning over 10 variables. While the convergence-gap gets more significant
with an increasing noise level, random targeting does not converge to the ground-truth graphs for
a noise level higher than η = 0.02. In contrast, AIT still converges to the correct graph and shows
even a convergence tendency for η = 0.05. These findings support our observation from different
experiments that active intervention targeting leads to a more controlled and robust graph discovery.
Further experimental results in noise-perturbed environments can be found in Appendix.

5 Conclusion
Promising results have driven the recent surge of interest in continuous optimization methods for
Bayesian network structure learning from observational and interventional data. In this work, we
propose an active learning method to choose interventions that help to identify the underlying graph
efficiently in the setting of differentiable causal discovery. We show via a detailed empirical study
that active intervention targeting not only improves sample efficiency but also the identification of the
underlying causal structures compared to random targeting of interventions.

While our method shows significant improvements with respect to sample efficiency and graph
recovery over existing methods across multiple noise-free and noise-perturbed datasets, the number
of interventions is not yet optimal [4, 13] and can potentially be reduced in future work. Further, in
this work, the interventional samples were presented to the evaluated frameworks according to a fixed
learning schema (e.g. fixed number of samples for evaluated interventions in graph scoring). It would
be interesting to see if the information discovered by AIT could be used for a more adaptive learning
procedure to further improve sample efficiency.
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A.1 Related Work

Causal induction can use either observational and (or) interventional data. With purely observational
data, the causal graph is only identifiable up to a Markov equivalence class (MEC) [48], interventions
are needed in order to identify the underlying causal graph [12]. Our work focuses on causal induction
from interventional data.

Causal Structure Learning. There exists several approaches for causal induction from interventional
data: score-based, constraint-based, conditional independence test based and continuous optimization.
We refer to [21, 51] for recent overviews. While most algorithms perform heuristic, guided searches
through the discrete space of DAGs, Zheng et al. [54] reformulates it as a continuous optimization
problem constrained to the zero level set of the adjacency matrix exponential. This important result
has driven recent work in the field and showed promising results [25, 52, 40, 30, 55, 56]. Due to the
limitations of purely observational data, Ke et al. [26] and Brouillard et al. [7] extend the continuous
optimization framework to make use of interventional data. Lippe et al. [33] scales in a concurrent
work with ours the work of [26] to higher dimensions by splitting structural edge parameters in
separate orientation and likelihood parameters and leveraging it in an adapted gradient formulation
with lower variance. In contrast to [7, 26] and our work, they require interventional data on every
variable.

Active Causal Structure Learning. Interventions are usually hard to perform and in some cases
even impossible [42]. Minimizing the number of interventions performed is desirable. Active
causal structure learning addresses this problem, and a number of approaches have been proposed
in the literature. These approaches can be divided into those that select intervention targets using
graph-theoretic frameworks, and those using Bayesian methods and information gain.

Graph-theoretic frameworks usually proceed from a pre-specified MEC or CPDAG (completed
partially directed acyclic graph) and either investigate special graph substructures [20] such as cliques
[11, 49], trees [17], or they prune and orient edges until a satisfactory solution is reached [15, 16, 23],
perhaps under a cost budget [27, 32]. Their chief limitation is that an incorrect starting CPDAG can
prevent reaching the correct graph structure even with an optimal choice of interventions.

The other popular set of techniques involve sampling graphs from the posterior distribution in
a Bayesian framework using MCMC and then selecting the interventions which maximize the
information gain on discrete [38, 50] or Gaussian [9] variables. The drawbacks of these techniques
are poor scaling and the difficulty of integrating them with non-Bayesian methods, except perhaps by
bootstrapping [2].

In contrast to existing work, our base frameworks do not start from a pre-specified MEC or CPDAG
and existing graph-theoretical approaches are hence not applicable unless we pre-initalize them with
a known skeleton. However, in the case we offer access to a predefined structure in the form of
a MEC or CPDAG, a previously directed edge is likely to be inverted during the ongoing process
which contradicts with the underlying assumptions of existing approaches. Further, we build atop
non-Bayesian frameworks and are therefore limited in applying methods based on information gain
which require access to a posterior distribution over graph structures. While bootstrapping would
allow us to approximate the posterior distribution over graph structures in our non-Bayesian setting,
it is not guaranteed to achieve full support over all graphs since the support is limited to graphs
estimated in the bootstrap procedure [2]. Furthermore, the computational burden of bootstrap would
limit us in scaling to graphs of larger size.
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A.2 Two-Stage DAG Sampling

A.2.1 Algorithm Outline

We present an outline of the proposed two-stage DAG sampling procedure which exploits structural
information of the soft-adjacency beyond independent edge confidences. The routine is based on
a graph belief state γ where σ(γ) denotes a soft-adjacency characterization. We start by sampling
topological node orderings from an iterative refined score and construct DAGs in the constrained
space by independent Bernoulli draws over possible edges. We can therefore guarantee DAGness by
construction.

The temperature parameter t > 0 of the temperature-scaled softmax can be used to account for the
entropy of the graph belief state. However, in the general setting we suggest to initialize the parameter
to t = 0.1. Note that initializing t → 0 results in always picking the maximizing argument and
t→∞ results in an uniform distribution.

Algorithm 2 Two-Stage DAG Sampling
Input: Graph Belief State σ(γ) in the form of a soft-adjacency matrix
Output: DAG Adjacency Matrix ADag

. Phase 1: Sample Node Ordering ≺
1: A0 ← σ(γ)
2: nodes← [0, ..., N − 1]
3: for k = 0 to N − 1 do
4: pkc (i)← maxAk[i, :]
5: pkr (i)← 1− pkc (i)
6: pks(i)←

exp[pk
r (i)/t]∑

j exp[pk
r (j)/t]

7: rk ← nodes[idxk] where idxk ∼ Categorical(pks)
8: Remove rk from nodes
9: Ak+1 ← Ak[nodes, nodes]

10: end for
11: ≺= [r0, ..., rN−1]

. Phase 2: Sample DAG based on node ordering ≺

12: APerm ← Permute σ(γ) according to ≺
13: APerm ← Constrain upper diagonal part by setting values to 0
14: ABer ← Bernoulli(APerm)
15: ADag ← Apply inverse permutation of ≺ to ABer

A.2.2 Connection to Plackett-Luce distribution [35, 43]

Our proposed node ordering sampling routine can be regarded as an extension of the Placket-Luce
distribution over node permutations. In contrast, we refine scores in an iterative fashion rather than
setting them apriori as we account for previously drawn nodes to estimate the probability of a node
being the root node in the current iteration.
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A.3 Experimental Setup

A huge variety of SCMs and their induced DAGs exist, each of which can stress causal structure
discovery algorithms in different ways. In this work, We perform a systematic evaluation over a
selected set of synthetic and non-synthetic SCMs. We distinguish between discrete (based on DSDI
[26]) or continuous (based on DCDI [7]) valued random variables. Through all experiment, we limit
us to 1000 samples per intervention.

A.3.1 Synthetic Datasets

Graph Structure. We adopt the structured graphs (see Fig. 9) proposed in the work of DSDI [26]
as they adequately represent topological diversity of possible DAGs in a compact fashion. They
can be split up in a set of graphs without cycles in the undirected skeletons, and one group with
cycles. Extending the setup with random graphs with varying edge densities, generated from the
Erdős–Rényi (ER) model, allows us to assess the generalized performance of the proposed method
from sparse to dense DAGs.

Discrete Data Generation. We adopt the generative setup of DSDI [26] and model the SCMs using
two-layer MLPs with Leaky ReLU activations between layers. For every variable Xi, a seperate MLP
models the conditional relationship P (Xi|Xpa(i)). The MLP parameters are initialized orthogonally
within the range of [−2.5, 2.5] and biases uniformly in the range of [−1.1, 1.1].
Continuous Data Generation. For the evaluation of the adapted DCDI framework, we adopt their
generative setup as described in [7] and use the existing non-linear datasets.

Graphs with acyclic skeletons:

(a) Chain (b) Collider (c) Tree

Graphs with cyclic skeletons:

(d) Bidiag (e) Jungle (f) Full

Figure 9: Visualization of Structured Graphs as proposed in Ke et al. [26] - adapted illustration
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A.3.2 Real-World Datasets

Besides the many synthetic graphs, we evaluate our method on real-world datasets provided by the
BnLearn data repository. Namely on the Asia [31] and the Sachs [45] datasets (see Fig. 10 for a
visualization of their underlying ground-truth structure). Sachs [45] represents a systems biology
dataset which exhibits non-linearity, confounding and complex structure.

(a) Asia (b) Sachs

Figure 10: Ground-truth structure of the evaluated real-world datasets provided by the BnLearn data repository -
Illustration from: https://www.bnlearn.com/bnrepository/discrete-small.html

A.4 Availability of Used (Existing) Assets

Base Frameworks.

• DSDI [26]: https://github.com/nke001/causal_learning_unknown_interventions
• DCDI [7]: https://github.com/slachapelle/dcdi

Baseline Methods.

• GES [8] and GIES [18]: www.github.com/FenTechSolutions/
CausalDiscoveryToolbox [24]

• ICP [41]: https://github.com/juangamella/aicp
• A-ICP [14]: https://github.com/juangamella/aicp
• NOTEARS [54]: https://github.com/xunzheng/notears
• DAG-GNN [52]: https://github.com/fishmoon1234/DAG-GNN

Datasets.

• BnLearn Data Repository: https://www.bnlearn.com/bnrepository/
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A.5 Hyper-Parameters

We used a similar set of hyperparameters for our AIT + DSDI and AIT + DCDI models as those used
in the original paper [26, 7]. The specific hyperparamters we used are stated as follows.

DSDI.

Table 3: Hyperparameters for DSDI including the corresponding
AIT parameters

Number of iterations 1000
Batch size 256
Sparsity Regularizer 0.1
DAG Regularizer 0.5
Functional parameter training iterations 10000
Number of interventions per phase 2 25
Number of data batches for scoring 10
Number of graph configurations for scoring
- Graph Size 5: 10
- Graph Size 10: 20
- Graph Size 15 40

AIT:
- Number of graph configurations 100
- Number of interventional samples per graph & target 256

DCDI.

Table 4: Hyperparameters for DCDI including the corresponding
AIT parameters

µ0 10−8

γ0 0
η 2
δ 0.9
Augmented Lagrangian Thresh 10−8

Learning rate 10−3

Nr. of hidden units 16
Nr. of hidden layers 2

AIT:
- Number of graph configurations 100
- Number of interventional samples per graph & target 256
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A.6 Discrete Setting: Additional Experiments / Results

In this section, we show further results and visualizations of experiments on discrete data and single-
target interventions in various settings (such as graphs of varying size, noise-free vs. noise-perturbed,
limited intervention targets). All experiments are based on the framework DSDI.

A.6.1 Evaluation (SHD) on graphs of varying size and density

Table 5: SHD (lower is better) on various 5-variable synthetic datasets. Structured graphs are sorted in ascending
order according to their edge density. (∗) denotes average SHD over 10 random graphs., †ER-2 graphs on 5
results in the full5 graph and ER-4 graphs on 5 node graphs are non-existing

Structured Graphs Random Graphs

Chain Collider Tree Bidiag Jungle Full ER-1(∗) ER-2(∗) ER-4(∗)

GES [8] 3 0 4 6 4 9 4.3 (±1.0) † †
GIES [18] 3 4 2 6 5 10 4.7 (±1.6) † †
ICP [41] 4 4 4 7 6 10 5.4 (±1.4) † †
A-ICP [14] 4 4 4 7 6 10 5.4 (±1.4) † †

NOTEARS [54] 5 3 6 5 7 9 6.1 (±1.7) † †
DAG-GNN [52] 4 4 3 4 6 9 5.1 (±1.4) † †

DSDI (Random) [26] 0 0 0 0 0 0 0.0 (±0.0) † †
DSDI (AIT) 0 0 0 0 0 0 0.0 (±0.0) † †

Table 6: SHD (lower is better) on various 10-variable synthetic datasets. Structured graphs are sorted in
ascending order according to their edge density. (∗) denotes average SHD over 10 random graphs.

Structured Graphs Random Graphs

Chain Collider Tree Bidiag Jungle Full ER-1(∗) ER-2(∗) ER-4(∗)

GES [8] 9 2 6 8 10 35 7.0 (±1.6) 10.7 (±3.8) 26.7 (±2.9)
GIES [18] 12 6 13 16 9 20 12.2 (±5.1) 14.1 (±4.7) 26.1 (±4.4)
ICP [41] 9 9 9 17 16 45 10.6 (±2.5) 20.7 (±3.3) 39.8 (±1.9)
A-ICP [14] 9 9 9 17 16 45 10.6 (±2.5) 20.7 (±3.3) 39.8 (±1.9)

NOTEARS [54] 13 16 12 21 21 42 16.4 (±3.4) 22.9 (±2.9) 36.6 (±2.6)
DAG-GNN [52] 8 7 6 15 13 38 10.3 (±2.8) 20.1 (±3.5) 38.4 (±1.9)

DSDI (Random) [26] 0 0 0 0 0 0 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)
DSDI (AIT) 0 0 0 0 0 0 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)

Table 7: SHD (lower is better) on various 15-variable synthetic datasets. Structured graphs are sorted in
ascending order according to their edge density. (∗) denotes average SHD over 10 random graphs.

Structured Graphs Random Graphs

Chain Collider Tree Bidiag Jungle Full ER-1(∗) ER-2(∗) ER-4(∗)

GES [8] 13 1 12 14 14 69 8.3 (±1.9) 17.6 (±4.6) 39.4 (±6.7)
GIES [18] 13 6 10 17 23 60 10.9 (±4.2) 18.1 (±4.3) 39.3 (±5.6)
ICP [41] 14 14 14 27 26 105 16.2 (±3.6) 31.1 (±3.4) 60.1 (±3.9)
A-ICP [14] 14 14 14 27 26 105 16.2 (±3.6) 31.1 (±3.4) 60.1 (±3.9)

NOTEARS [54] 22 21 26 33 35 93 23.7 (±4.0) 35.8 (±5.2) 59.5 (±3.7)
DAG-GNN [52] 11 14 15 27 25 97 16.0 (±3.7) 30.6 (±3.4) 59.7 (±4.1)

DSDI (Random) [26] 0 0 2 3 7 24 1.4 (±1.6) 2.1 (±2.3) 7.2 (±2.7)
DSDI (AIT) 0 0 0 0 0 7 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)
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A.6.2 Evaluation of convergence speed on graphs of varying size and density

While we have shown the effectiveness of AIT on random ER graphs of size 15 in §4, we observe
similar effects on ER graphs of size 10 (see Figure 11). Overall, the results indicate a greater impact
of our proposed targeting mechanisms on graphs of bigger size compared to random intervention
targeting which poorly scales to graphs of larger size.
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(b) ER-2:
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(c) ER-4:

Figure 11: DSDI with AIT (orange) leads to superior performance over random intervention targeting (blue) on
random graphs of size 10 of varying edge densities. Error bands were estimated using 10 random ER graphs
per setting.

0 10000 20000 30000 40000 50000
Steps

0

25

50

75

S
H

D

0 10000 20000 30000 40000 50000
Steps

0.4

0.6

0.8

1.0

%
 o

f c
or

re
ct

 id
en

tif
ie

d 
G

T 
ed

ge
s

(a) ER-1:
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(b) ER-2:
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(c) ER-4:

Figure 12: DSDI with AIT (orange) leads to superior performance over random intervention targeting (blue) on
random graphs of size 15 of varying edge densities. Error bands were estimated using 10 random ER graphs
per setting.

20



A.6.3 Target selection analysis for graphs of varying size and density

We evaluate the distribution of target node selections over multiple DAGs of varying size to
investigate the behaviour of our proposed method. Over all performed experiments, our method
prefers interventions on nodes with greater (downstream) impact on the overall system, i.e. nodes of
higher topological rank in the underlying DAG.

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN5

BIDIAG5

COLLIDER5

TREE5

JUNGLE5

FULL5

ER-1(*)

0.83 0.34 0.31 -0.34 -0.34

0.65 0.34 0.06 -0.34 -0.34

0.82 0.82 -0.82 -0.82 -0.82

0.10 -0.13 0.37 -0.02 -0.02

-0.09 -0.09 -0.07 -0.07 -0.07

0.32 0.32 -0.32 -0.32 -0.32

0.33 0.23 -0.24 -0.28 -0.22

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN10

COLLIDER10

TREE10

BIDIAG10

JUNGLE10

FULL10

ER-1(*)

ER-2(*)

ER-4(*)

-0.27 0.37 -0.27 -0.37 -0.37

-0.28 -0.28 0.28 0.28 0.28

0.53 0.38 -0.28 -0.41 -0.41

-0.03 0.38 -0.24 -0.38 -0.38

0.38 0.37 -0.48 -0.41 -0.41

0.37 0.37 -0.37 -0.37 -0.37

0.11 0.15 -0.27 -0.22 -0.21

0.21 0.30 -0.24 -0.26 -0.27

0.39 0.38 -0.42 -0.38 -0.37

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN15

COLLIDER15

TREE15

BIDIAG15

JUNGLE15

FULL15

ER-1(*)

ER-2(*)

ER-4(*)

0.02 0.36 -0.59 -0.36 -0.36

0.04 0.04 -0.04 -0.04 -0.04

0.22 0.70 -0.61 -0.60 -0.60

-0.01 0.36 -0.60 -0.36 -0.36

0.61 0.69 -0.77 -0.59 -0.59

0.37 0.37 -0.37 -0.37 -0.37

0.22 0.25 -0.13 -0.09 -0.13

0.28 0.38 -0.26 -0.26 -0.30

0.30 0.38 -0.29 -0.31 -0.36

(a) Random Targeting

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN5

BIDIAG5

COLLIDER5

TREE5

JUNGLE5

FULL5

ER-1(*)

0.99 0.78 -0.30 -0.78 -0.78

0.99 0.90 -0.60 -0.90 -0.90

1.00 1.00 -1.00 -1.00 -1.00

1.00 0.90 -0.58 -0.79 -0.79

0.98 0.98 -0.86 -0.86 -0.86

0.99 0.99 -0.99 -0.99 -0.99

0.99 0.94 -0.73 -0.74 -0.77

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN10

COLLIDER10

TREE10

BIDIAG10

JUNGLE10

FULL10

ER-1(*)

ER-2(*)

ER-4(*)

0.76 0.95 -0.46 -0.95 -0.95

0.98 0.98 -0.98 -0.98 -0.98

0.98 0.84 -0.49 -0.82 -0.82

0.92 0.90 -0.42 -0.90 -0.90

0.99 0.94 -0.89 -0.91 -0.91

0.96 0.96 -0.96 -0.96 -0.96

0.95 0.92 -0.64 -0.72 -0.74

0.98 0.93 -0.72 -0.82 -0.83

0.96 0.95 -0.91 -0.94 -0.95

Out-Degree

Descendants
In-Degree

Ancestors

Topological-Order

CHAIN15

COLLIDER15

TREE15

BIDIAG15

JUNGLE15

FULL15

ER-1(*)

ER-2(*)

ER-4(*)

0.46 0.98 -0.51 -0.98 -0.98

0.38 0.38 -0.38 -0.38 -0.38

0.96 0.77 -0.41 -0.92 -0.92

0.67 0.97 -0.51 -0.97 -0.97

0.98 0.85 -0.79 -0.97 -0.97

0.93 0.93 -0.93 -0.93 -0.93

0.79 0.79 -0.48 -0.54 -0.59

0.91 0.90 -0.60 -0.73 -0.76

0.96 0.94 -0.78 -0.87 -0.88
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Figure 13: Correlation scores over graphs of varying size and density between the number of individual target
selections and different topological properties of those targets. AIT shows strong correlations with the measured
properties over all graphs, which indicates a controlled discovery of the underlying structure through preferential
targeting of nodes with greater (downstream) impact on the overall system.
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A.6.4 Visualization of target distribution on structured graphs of size 5

(a) Random Targeting (b) Active Intervention Targeting

Figure 14: Visualization of target selection on structured graphs of size 5 - bigger node size denotes more
selection of the node. While Random Targeting acts as we expect and selects every node an uniform amount,
AIT prefers targeting of nodes with greater (downstream) impact on the overall system, i.e. nodes of higher
topological order.
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A.6.5 Extended Analysis of Edge Dynamics

We show all edge dynamics of all structured graphs over 15 variables and compare the dynamics of
random targeting to active intervention targeting in a noise-free setting where we have access to all
possible single-target interventions.

(a) Graph: Chain

(b) Graph: Tree

(c) Graph: Collider

Figure 15: Edge Dynamics of the examined structured graphs spanning over 15 variables - Part 1: The upper
part shows the dynamics of random targeting and the lower of active intervention targeting.
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(d) Graph: Bidiag

(e) Graph: Jungle

(f) Graph: Full

Figure 16: Edge Dynamics of the examined structured graphs spanning over 15 variables - Part 2: The upper
part shows the dynamics of random targeting and the lower of active intervention targeting.
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A.6.6 Improved robustness with DSDI+AIT in noise perturbed environments

While section §4 highlights our key findings in noise-perturbed systems, we examine the impact of
AIT in noise perturbed environments more thoroughly in this section. Therefore, we systematically
analyze experiments under different noise levels in the setting of binary data generated from random
graphs of varying densities. A noise level η denotes the probability of flipping a random variable and
apply it to all measured variables of observational and interventional samples.

Evaluating convergence on various ER graphs of varying densities over 10 variables under different
noise levels reveals that the impact of AIT becomes of larger magnitude as the density of the graph
and the noise level increases.

Table 8: Performance evaluation (SHD) under different noise level η for structured and random graphs (∗)

denotes average SHD over 3 random graphs.
Chain10 Collider10 Tree10 Bidiag10 Jungle10 Full10 ER-1(∗) ER-2(∗) ER-4(∗)

η = 0.0
Random 0 0 0 0 0 0 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)
AIT 0 0 0 0 0 0 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)

η = 0.01
Random 0 0 0 0 0 3 0.0 (±0.0) 0.0 (±0.0) 0.6 (±0.5)
AIT 0 0 0 0 0 0 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)

η = 0.02
Random 0 4 0 0 0 12 0.0 (±0.0) 0.0 (±0.0) 6.0 (±1.6)
AIT 0 0 0 0 0 3 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)

η = 0.05
Random 1 9 0 2 1 33 1.3 (±0.5) 8.0 (±2.2) 27.0 (±0.5)
AIT 0 7 0 0 0 23 0.0 (±0.0) 1.3 (±0.5) 18.7 (±1.2)

η = 0.1
Random 9 9 9 16 16 45 11.0 (±0.8) 20.7 (±0.5) 40.0 (±0.8)
AIT 7 9 6 16 15 44 10.3 (±0.5) 20.0 (±0.8) 39.3 (±1.2)

(i) ER-1:

(ii) ER-2:

(iii) ER-4:

(a) η = 0 (b) η = 0.01 (c) η = 0.02 (d) η = 0.05

Figure 17: Convergence behaviour in terms of SHD for random ER graphs of various densities over 10 variables
under different noise levels η. Overall, Active Intervention Targeting (orange) clearly outperforms Random
Targeting (blue) over all densities under all noise levels. The performance gap becomes of larger magnitude as
density of the graph and the noise level increases. Error bands were estimated using 3 random ER graphs per
setting.
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A.6.7 Identification of informative intervention targets

Our proposed method aims to select most informative intervention target(s) Ik∗ ∈ I with respect
to identifiability of the underlying structure. We conjecture that such targets yield relatively high
discrepancy between samples drawn under different hypothesis graphs, indicating larger uncertainty
about the target node’s relation to its parents and/or children.

In order to evaluate our methods capability of detecting informative intervention targets, we perform
multiple experiments on structured graph structures (chain5, tree5 and full5) where we preinital-
ize the structural belief to the ground-truth structure structure but keeping one edge between a pair
of nodes (i,j) undirected, i.e. σ(γi,j) = σ(γj,i) = 0.5. Throughout the experiments, we vary the
position of the undirected edge and analyze which nodes are targeted by our method.

Over all evaluated settings, we can observe how AIT preferentially targets the pair of nodes cor-
responding to the undirected edge, with small preferences towards the source nodes of the correct
directed edge (see in Figure 18 and Figure 19). This observation is in line with our conjecture that
AIT preferentially targets nodes with larger uncertainty about the target node’s relation to its parents
and/or children.

Figure 18: AIT chooses informative intervention targets by preferentially identifying and targeting the pair of
nodes corresponding to the undirected edge (nodes are marked red in the distribution of selected target nodes
and edges is visualized red in the graph on the right). - First set of experiments based on the structured graphs
chain5 and tree5.
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Figure 19: AIT chooses informative intervention targets by preferentially identifying and targeting the pair of
nodes corresponding to the undirected edge (nodes are marked red in the distribution of selected target nodes
and edges is visualized red in the graph on the right). - Second set of experiments based on the structured graph
full5.

A.6.8 Limited Intervention Targets

While we allow access to all possible single-target interventions in all other experiments, real world
settings are usually more restrictive. Specific interventions might be either technically impossible or
even unethical, or the experiments might want to prevent interventions upon specific target nodes
due to increased experiment costs. In order to test the capability of AIT, we limit the set of possible
intervention targets in the following experiments and analyze the resulting behaviour based on DSDI.
We examine speed of convergence and the effect on the target distribution under different scenarios
on structured graphs using DSDI with AIT based on single-target interventions.

Scenario 1: We perform experiments on a Chain5 graph where we restrict us on intervening upon a
different node in five experiment and once allow access to all targets as a comparison.

Throughout the experiments, we observe that blocking interventions on nodes of a higher topological
level results in greater degradation of the convergence speed compared to blocked intervention on
lower levels (see Figure 20). Furthermore, the distribution of selected targets indicates that our
method preferentially chooses neighboring nodes of a blocked target node in the restricted setting.
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Figure 20: Limited intervention targets on Chain5: The impact of the restricted target node (red circled node) is
clearly observable in the convergence speed (left) and distribution of target selections (middle). The speed of
convergence indicates a dependence on the topological characteristic of the restricted intervention target.
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Scenario 2: We perform multiple experiments on a Tree5 graph where we restrict access to different
subsets of nodes (e.g. root node, set of all sink nodes) for single-target interventions.

Similar to the experiments on Chain5, we observe a clear impact of the available intervention targets
on the convergence speed and identifiability of the underlying structure (see Figure 21). While
preventing interventions on all sink nodes (node 2, 3 and 4) results in improved convergence towards
the underlying structure, restricted access to the set of nodes which act as causes of other nodes (node
0 and 1) prevents us from identifying the correct underlying structure.

Figure 21: Limited intervention targets on Tree5: The impact of the restricted target nodes (red circled nodes)
is clearly observable in the convergence speed (left) and distribution of target selections (middle).
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A.7 Continuous Setting: Technical Details and further Results

While the original framework of DCDI [7] proposes a joint-optimization over the observational
and interventional sample space by selecting samples at random, we adapt their framework to the
setting of active causal discovery where we acquire interventional sample in an adaptive manner. We
hypothesize that a controlled selection of informative intervention targets allows a more rapid and
controlled discovery of the underlying causal structure.

A.7.1 Integration of AIT into DCDI

Instead of demanding the full interventional target space during the complete optimization as in the
original approach, we split the optimization procedure into different episodes, where AIT is used
to estimate a target space I of size K for each episode. This is done by computing the discrepancy
scores over all possible intervention targets and selecting the K highest scoring targets. During an
episode, we continue by performing L gradient steps using the fixed target space I and reevaluate it
afterwards for the next episode. We visualize the adaption in the following high-level outline of the
individual methodologies.

Algorithm 3 DCDI

1: I ← Full target space of size K = N
2: Run DCDI on I until convergence

⇒

Algorithm 4 DCDI + AIT

1: for episode e = 0 until convergence do
2: I ← Estimate target space of size K using AIT
3: Run L gradient steps of DCDI on I
4: end for

A.7.2 Evaluation

We evaluate the effectiveness of AIT in the base framework of DCDI in the setting of non-linear,
continuous data generated from random graphs over N = 10 variables and show the potential of our
proposed method.

Structural Identification / Convergence: Despite their joint optimization formulation is not apriori
designed for the setting of experimental design, an AIT guided version shows superior/competitive
performance in terms of structural identification and sample complexity over the original formulation
(see Figure 22).

Distribution of Intervention Targets: As in DSDI, we observe strong correlation of the number
of target selections with the measured topological properties of the specific nodes. This indicates a
controlled discovery of the underlying causal structure through preferential targeting of nodes with
greater (downstream) impact on the overall system. In addition, interventions on variables without
children are drastically reduced (see also §4 for equivalent observations in DSDI).

Effect of Target Space Size K: While the original formulation assumes K = N for the complete
optimization procedure (i.e. L = 1) and relies on random samples out of the full target space, our
adapted AIT-guided version of DCDI constrains the target space to a subset of targets for each episode.
An ablation study on the size of the target space shows that for all choices of K ∈ {2, 4, 6, 8}, our
approach outperforms the original formulation in terms of sample complexity while achieving same
or better performance in terms of SHD.
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Figure 22: While DCDI Vanilla assumes access to the full interventional target space through the complete
optimization, the AIT guided DCDI approach reevaluates its interventional target space of size K = 6 every
L = 1000 gradient steps. Among the above evaluated graphs (ground-truth on the left), DCDI+AIT demonstrates
a more rapid identification of the underlying causal structure while achieving same or better performance in
terms of SHD. The distribution of selected single-node intervention targets reveals again its connection to the
topological properties of the corresponding nodes.

(a) K = 2 (b) K = 4 (d) K = 6 (d) K = 8

Figure 23: All evaluated target space sizes K ∈ {2, 4, 6, 8} show that DCDI+AIT (orange) outperforms DCDI
(blue) in terms of sample complexity while achieving similar performance. Error bands were estimated using 10
random ER graphs per setting.
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