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A PCFG for symbolic causal functions

Let f be a causal function that takes the agent object a and the recipient object r as input, and
outputs the result object r′. We assume a prior over possible causal functions in the form of a PCFG
G = (Γ,Θ), where Γ is a set of production rules and Θ is a set of production probabilities (see
Table 2). Let φi denote the i-th feature in the set of all observable object features Φ. Grammar
G thus generates expressions that specify features of the result object. For example, if one of the
features is “color”, a possible causal function could be color(r′) ⇐ red — recipient will turn
red — or color(r′)⇐ color(a) — recipient will take the agent’s color, and so on. The grammar
is set up to allow for arbitrarily complex expressions through the the “bind additional” production
rule (Table 2, row 2), allowing a rule to produce conjunctions of feature changes, for example,
AND(color(r′)⇐ red,shape(r′)⇐ triangle).

We assume that any features unspecified by a causal function follow the principle of inertia, and
remain as they were before the causal interaction.

Note that although grammar G is very similar to a PCFG, it is not context-free strictly speaking:
the “bind feature” production rule (Table 2, row 1) binds a feature to a lambda expression, and the
subsequent steps within the scope of the λ-abstraction all refer to this feature.

For simplicity, we assume uniform transition probabilities for each production rule. i.e., θl = 1
|I| for

each row I with production rules l ∈ I . By design, this grammar is inherently more likely to produce
simpler expressions. The “bind additional” rule is called with probability 0.5, and thus the number of
conjunctions in the final expression follows a geometric decay with only 50% combining more than
one assertion, 25% containing more than two, and so on. The prior for a given expression is thus
simply the product of all the productions that produced it:

PG(f) =
∏
l∈Γ

(θl)
cl (6)

where l ∈ I is the transition probability for production rule l ∈ Γ, and cl is how many times rule l
was used for generating this causal function.

A causal function outputs result object(s) when particular agent and recipient objects are provided.
Take AND(color(r′)⇐ color(a),shape(r′)⇐ square) for example. For an agent a that is
a red-circle and a recipient r that is a blue-pentagon, r will become r′: a red-square.
When a causal function f involves a negation, it could have produced more than one outcome. For
example let w be shape(r′)⇐ ¬triangle, any object that is not triangular (and share the same
color as r) is a possible option for being r′. We further assume for simplicity that the different
potential outcomes are equally probable, and thus likelihood of a data point d = (a, r, r′) generated
by a causal function f is given by

P (d|f) = P (r′|f, a, r) =

{
1

D(f(a,r)) if r′ ∈ D(f(a, r)),

0 otherwise
(7)

where D stands for domain and D(f(a, r)) refers to the set of all possible result objects coming
out of f given agent a and recipient r. We initially assume a likelihood to 0 for any observation
a, r, r′ incompatible of f(a, r), but later consider “soft” variants in which functional relationships
are somewhat fallible.

This framework naturally favors deterministic causal functions that are consistent with the evidence:
if a causal function predicts a specific result, when that outcome is indeed observed, likelihood will
be 1. In contrast, a causal function that predicts a range of outcomes will inevitably assign a lower
likelihood to any one of these.
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Table 2: Example probabilistic grammar G
Production rules

Bind feature S → λφi : A,Φ
Bind additional A→ B AND(B,S)
Relation B → φi(r

′)⇐ C φi(r
′)⇐ ¬C

Reference C → D E
Relative reference D→ φi(a) φi(r)
Absolute reference E → valueφi

Note: “Bind feature” samples a feature without replacement from the set of all features. φi in D
uses the feature selected in A, and value in E is sampled uniformly from the support of the feature
selected in A.

B Unpacking latent causal categories

A CRP is a stochastic process widely used for creating partitions among entities [47]. It draws on an
analogy of sequentially seating infinite incoming customers to infinitely many tables in a Chinese
restaurant, where each table is also of infinite capacity. The first observation d(1) is always assigned
the first category z(1); when i > 1, the probability for assigning category z(i) is given by

P (z(i) = x|z(−i)) =

{
α

i−1+α if x is a new category
|z(j)|
i−1+α if x = z(j)

(8)

where z(j) is an existing category, and |z(j)| is the number of assigned objects in category z(j).
Parameter α (α > 0) is known as the concentration, or dispersion parameter—the larger α is, the
more likely a new object falls into a new category. Holding the same α, categories with more members
are preferred as they seem to be more “common”.

Objects in a category characterize shared feature similarities, modeled by a multinomial distribution
over a finite number of feature values. Let µ(zi) = [µ1, . . . , µn] be the mean feature vector of a given
category zi, where each subscript k in µk refers to a feature, µk is the mean value of feature k for all
the objects in category zi, the probability that an object is assigned to a particular category according
to feature similarities is given by

P (o(i)|µ(zi)) =

n∏
k=1

Bernoulli(o(i);µk) (9)

To compute µk, let ov = [ov1 , . . . , ovn ] be the feature values of an object o, where each v rep-
resents a feature value, ovi = 1 if object o has this feature value and ovi = 0 otherwise. For a
category z = {o(i), . . . , o(m)}, zv :=

∑m
j=1 o

(j)
v , which can be written as zv = [zv1 , . . . , zvn ], where

zvi =
∑m
j=1 o

(j)
vi . Mean feature µk :=

zvk∑n
l=1(zvl )

. We assign a Dirichlet prior to this multinomial
distribution in order to capture how important feature similarity is in forming categories. Without
leaning towards any specific feature, the prior distribution over mean features is simply Dir(β), β ≥ 0.

It is not obvious whether mean features should be drawn from the agent object, recipient object,
or both, therefore we introduce one more hyper parameter γ, referring to the probability that mean
feature is purely based on the agent: when γ = 1, categorization is only grounded on the agent
objects, when γ = 0, only recipient’s features are considered for categorization, and when γ = 0.5,
both agent and recipient are considered equally. We thus consider 0 ≤ γ ≤ 1.

In sum, a Dirichlet Process that creates a distribution over causal category distributions according to
Equation 2 has the priors:

z(i)|z(−i) ∼ CRP(·|α)

µ(i) ∼ Dir(·|β)

f (zi) ∼ G(·) (10)
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Algorithm 1 Process model

1: Initialize an empty list of causal categories Z . Initialization
2: Assign a(0), r(0) ∈ d(0) to category z(1), update µ(1) . Learning example goes to the first

category
3: Sample f (1) from the learning posterior
4: Record z(1) in list of causal categories Z
5: for each d(i) ∈ DG do
6: sample z(i) ∝ P (z(i)|z(−i))P (a(i), r(i)|µ(zi)) . Equation 5
7: if z(i) ∈ Z then . If current object belongs to an existing category
8: r′(i) ∼ f (i)(a(i), r(i)) . Make prediction
9: Add a(i), r(i) to z(i): update µ(i) . Update Z

10: else
11: Assign a(i), r(i) to a new category z(k): update µ(k) . Create a new category
12: Sample f (k) from the prior
13: r′(i) ∼ f (k)(a(i), r(i)) . Make prediction
14: Add z(k) to Z . Update Z
15: end if
16: end for each

And likelihoods are given by

a(i), r(i)|µ(zi) ∼ Dir( · |µ(zi), β)

d(i)|f (zi) ∼ f (zi)(a(i), r(i)) (11)

where µ(z) is the mean feature vector, and f (z) the assigned causal function.

To approximate the posterior with Gibbs sampling, we construct a chain of samples where for
each iteration, we sample a causal category for a random observation d(i) while fixing the category
assignment to the other observations, and a sampled causal category z(i) will then update the category
parameters µ(zi) and f (zi). The category sampling step of this Gibbs sampler follows Equation 2,
and the local parameter update step follows definition of computing these parameters given objects in
this category. When the number of iterations n→∞, the sampled categories Z̃n coverges to the true
posterior.

C Process variant

The process model first assigns the object-pair in the learning example to an initial causal category
z(1) governed by a causal law sampled from the posterior distribution P (f |d). Crucially, for each
generalization task, it then assigns the encountered object pair scenario to either an existing causal
category or a new category according to Equation 5. If an existing causal category is selected, the
model simply applies the requisite causal law category to make its prediction. If a new category is
sampled, however, a new causal law will be assigned to this category. Since there is no evidence
about what causal law may apply to this new category, this new causal law is sampled from the prior.
Algorithm 1 shows this process.

Instead of approximating a posterior over infinitely many possible categories as the normative
model, the process model maintains a small set of available categories that are created online as new
generalizations are performed. Furthermore, after categorizing an observation, the process model
updates the list of causal categories Z with this categorization decision, reflecting a commitment to its
earlier decisions. Hyperparameter α thus plays a slightly different role in the process model. When
α→ 0, the process model becomes increasingly likely to stick with existing categories (Equation 8).
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(A) (B)

Figure 5: Experiment 1 stimuli. (A): Learning conditions, showing objects before and after a
causal interaction. (B): Generalization task configurations a∗, r∗ are the agent and recipient in each
generalization task; a and r are the agents and recipients in the learning example. Example stones are
for learning condition A1.

D Experiment 1 setup

D.1 Stimuli and design

Participants were told that they were making predictions about the behavior of a magic world
containing magic stones (agents) and normal stones (recipients). In short videos, participants
observed a magic stone collide with a normal stone and appear to alter the normal stone’s color
and/or shape (see Figure 1). Magic stones had a thick border while normal stones had no border. We
manipulated two object features—color {red, yellow, blue} and shape {circle, square, diamond},
leading to 3 × 3 = 9 possible configurations for each object and a nominal 9 × 9 × 9 = 729
configurations of agent and of recipient both pre- and post- the causal interaction.

We used a 6× 2 between-subject design. There were six learning examples varied between subjects
(Figure 5A)—each participant saw one. Each learning example demonstrates a causal effect differing
in whether it results in a change to one or both features of the recipient object, and whether either
or both of these new values match the agent object’s features. Note that the function descriptions
were not shown to participants and are by no means the only possible way to characterise the causal
relationship being displayed.

For each learning example, we constructed 15 generalization tasks by varying object features sys-
tematically from the learning example (Figure 5B). For example, A1 (see Figure 5A) depicts a red
square agent and a yellow circle recipient, and according to the specifications in Figure 5A, task 1 for
A1 has a red square agent, and a blue circle recipient. We call the sequence of tasks from 1 to 15
“near-first transfer” because this sequence of tasks starts with those that differ by only one feature
from the learning example and progress to scenes in which all of the features differ. Conversely,
we call the sequence of tasks 15 to 1 the “far-first transfer” sequence, because it starts with sets
of stones that are completely different from those in the learning examples and progresses back to
the more similar cases. Within each sequence, whether the set of different-color tasks or the set of
different-shape tasks appeared first (task 1 & 2, 5 & 6, 9 & 10, 13 & 14, 4—7 & 8—11) was shuffled
to counterbalance feature order.

A4



(1) Rule 1, fixed agent (2) Rule 1, fixed recipient

(3) Rule 2, fixed agent (4) Rule 2, fixed recipient

Figure 6: Experiment 2 learning conditions.

D.2 Procedure

After instructions, participants had to pass a comprehension quiz to start the main task. The main
task contained a learning phase and a generalization phase. During learning, participants watched
one specific magic stone’s effect on a normal stone (Figure 1A–C), and they could replay the effect
as many times as they wanted. After that, participants were asked to make predictions for 15 new
pairs of magic stones and normal stones sequentially, by selecting from a panel of 9 possible stones
(Figure 1D). A summary of the learning example (as used in Figure 5A) was displayed at all times
and the animation was replayed once between each generalization task to ensure it was not forgotten.
A demo of the task is available at http://bramleylab.ppls.ed.ac.uk/experiments/
bnz/magic_stones/index.html.

D.3 Model fits

Both the UnCala and LoCaLa models were fit to the behavioral data using the optim function
in R. As for the LoCaLaPro model, since it approximates posterior distribution with simulation-
based method, we optimized parameter values via grid search. Firstly, we set up a coarse grid
with α = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 4, 8}, β ={0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. After run-
ning this coarse grid and locating an optimal area, we ran another search over a finer grid for
α = {0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52} (β is the same as previ-
ously) to improve precision.
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Table 3: Experiment 2 generalization task configurations

For the fixed object Instance For the varied object Instance

o∗ = shade(o), edge(o) shade(o),¬edge(o)

¬shade(o), edge(o)

shade(o),¬edge(o) ¬shade(o), edge(o)

¬shade(o),¬edge(o)

o∗ is the object in generalization tasks, o is the object shown during learning. For the varied object,
¬shade(o) means picking a shade that has not appeared during the learning phase, and we chose two
instances for it.

E Experiment 2 setup

E.1 Stimuli and design

Similar to Experiment 1, we varied the shape and color properties of the objects. However, instead of
using categorical values, we introduced intuitively ordinal feature values. Shapes were all equilateral
and differed in terms of their number of sides: 3 (triangle), 4 (square), 5 (pentagon), 6 (hexagon),
and 7 (heptagon); colors were of identical hue and saturation (blue) but differed in lightness varying
between: 1 (light blue #c9daf8), 2 (medium blue #6d9eeb), 3 (dark blue #1155cc), and 4 (very
dark blue #052e54). Staying within the features’ observed values this leads to 4× 4 = 16 possible
configurations for each object, and a nominal 163 = 4096 possible configurations for objects both
pre- and post- the causal interaction. These ordinal features enlarge the space of effects and greatly
enriches the space of plausible rules, for example allowing causal laws in which a recipient stone
becomes darker or lighter when acted upon, gaining or losing sides, as well as those involving
copying or taking specific or random values.

During learning, each participant observed six causal interactions between different pairs of agent
and recipient before making generalizations. We included 2 (evidence-balance) × 2 (ground truth)
between-subject factors (see Figure 6). with respect to evidence-balance, for fixed-agent conditions
B1 and B3, an identical agent was shown in all learning examples, while the recipients it acted on
were varied systematically; in the fixed-recipient conditions B2 and B4, the recipient object was
always identical but was acted on by six different agents. We designed the evidence to be consistent
with two “ground truth” rules that counterbalance between the roles of the shape and the color
features:

Rule 1 (B1/B2) The recipient gets one increment darker and takes the agent’s shape plus one edge
AND(edge(r′)← edge(a) + 1,shade(r′)← shade(r) + 1)

Rule 2 (B3/B4) The recipient gains an edge and takes the agent’s shade plus one shade increment
AND(shade(r′)← shade(a) + 1,edge(r′)← edge(r) + 1)

Note that these “ground truth” rules are just one of an unbounded set of possible universal causal
relations consistent with the six learning trials, and a single universal category is just one of a much
larger set again of possible local causal law category structures.

We composed generalization tasks according to the configurations in Table 3. In total there were
4× 4 = 16 generalization tasks for each condition.

E.2 Procedure

After completing instructions, participants had to pass a comprehension quiz to proceed to the main
task, consisting of a learning phase, self-report, and a generalization phase. After the main task, par-
ticipants provided demographic information and feedback. A demo of the task is available at http:
//bramleylab.ppls.ed.ac.uk/experiments/bnz/myst/p/welcome.html.
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Figure 7: Behavioral results of Experiment 2. All y-axes are Cronbach’s alpha values. A. Task-wise
inter-person consistency per condition. Violin plots are density. Black dots are mean Cronbach’s
alpha values per condition. The major bar in the box plot is median and box extent is the 25 and
75 quantiles. B. Inter-person consistency per task differences. C. Inter-person consistency per role
differences.

Each participant was randomly assigned to one of the four learning conditions (Figure 6). The six
pairs of agent and recipient stones were shown in random order, one after another. By clicking a
“Test” button, they could watch the causal interaction as many times as they wanted. After each object
pair was tested, a summary visualization of the agent, recipient and the result was added to the top of
the page (see Figure 1E–F), and remained visible for the rest of the task. After the learning phase,
participants were asked to write down their best guess about how the mysterious stones worked,
and told they would receive a $0.50 bonus if they described the true underlying causal law. In the
generalization phase, participants faced the 18 generalization trials sequentially in random order. For
each, participants predicted the result recipient by selecting a number of edges and the shade of blue
from two drop-down menus (see Figure 1F). Participants were instructed they would receive a $0.10
for each correct prediction. We bonused participants as described afterwards.

E.3 Generalization consistency

As with Experiment 1, we measured inter-person consistency in generalization predictions computing
ρT for the sixteen generalization tasks per condition (excluding the two catch-trials), totalling
4× 16 = 64 values. Mean consistency was ρT = 0.87± 0.08, with min ρT = 0.57, max ρT = 0.98.
To compare generalization consistency against random selections, for each condition we conducted
Fisher’s exact test on the contingency table of selecting each possible result per trial. For all four
conditions, p < 0.001. Thus, as in Experiment 1, participants produced systematic generalization
patterns.

We then compared inter-person generalization consistency by condition. As illustrated in Figure 7A,
the fixed-agent condition induced higher consistency (ρT = 0.89 ± 0.06) than the fixed-recipient
condition (ρT = 0.85± 0.1), t(31) = 2.12, p = 0.04, 95%CI = [0.001, 0.08], while the difference
in ρT between the ground truth condition was negligible, t(31) = 0.22, p = n.s.. No interaction was
detected. In short, participants made more homogeneous predictions after observing the same agent
acting on a range of recipients, and diverged more having observed different agents interacting on the
same recipient.

Generalization consistency decreased as objects in the generalization tasks become more distinct
from those in the learning examples (Figure 7B). To show this, we constructed a rough measure of
dissimilarity, by counting the features of generalization trials that took novel values never observed
in the learning phase. Formally, let FL be the set of unique feature values of all the objects appeared
during learning, and Fi be the set of unique feature values of objects in a generalization trial i,
dissimilarity score DS = |Fi \ FL|. By design, dissimilarity scores DS ∈ {0, 1, 2, 3} (Table 3). We
found a significant negative relationship between task dissimilarity and generalization consistency,
β = −0.06, F (1, 62) = 37.48, p < 0.001.
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Figure 8: Rule guess categories.

Finally, we fit a linear regression model predicting ρT with task dissimilarity, evidence-balance
and ground truth, F (3, 60) = 15.63, p < 0.001. This revealed main effects of dissimilarity (β =
−0.06, p < 0.001) and evidence-balance (fixed-recipient, β = −0.04, p = 0.01), but not ground
truth (rule 2, β = −0.003, p = n.s.). As depicted in Figure 7B, consistency of judgments in the
fixed-agent conditions (B1 & B3, lighter lines) decreased slower than the fixed-recipient conditions
as dissimilarity increased (B2 & B4, darker lines).

Not only did the evidence-balance condition have a significant effect on generalization consistency,
dissimilarity of the agent or recipient objects in the generalization tasks was also associated with
lower consistency (Figure 7C). Holding recipient dissimilarity constant, increasing agent dissimilarity
does not predict prediction consistency significantly, F (1, 62) = 0.77, p = n.s.; however, recipient
dissimilarity does, F (1, 62) = 38.8, p < 0.001.

E.4 Self-reports

In Experiment 2, we asked participants to provide an explicit free-text guess about the nature of
the causal relationship(s) being tested after they completed the learning phase. Eighty-six percent
of these total responses (88/102) were compatible with the relevant learning observations, and
here we only analyze these. Two independent coders categorized participants guesses according
to their specificity and implicit localization of causal powers. The first coder categorized all free
responses, and the categorized 15% were then compared against the first coder’s. Agreement
level was 92%. The full set of free responses and the detailed coding scheme are available at
https://github.com/bramleyccslab/causal_objects.

Since our ground truths are not the only rules consistent with the learning data, we analyzed participant
self-reports not according to whether they got the ground truths right, but whether their own rules
were consistent with the learning data, as well as the level of generality in the reports. Hence, we first
defined three exclusive and exhaustive response specificity categories: specific, fuzzy, and tacit. A
specific self-report would predict a unique result object for any potential combination of agent and
recipient (for example “The inactive shape is always changed to a pentagon & its shade is changed to
one step darker than the active stone”). A fuzzy rule was one that left open for more than one possible
result objects (for example “It will be different colors and shapes”). We distinguished a second form
of under-specified self-report, tacit, if it left a feature unmentioned, which depending on background
assumptions might be taken to imply that feature remained unchanged but could also be compatible
with it taking some new or random value (for example “The active stone adds a side to the inactive
stone”).

We also had the coders categorize responses according to whether and how a self-report localized
the domain of the causal law asserted. Concretely, we included four labels A, R, AR, and universal.
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If a response mentioned a specific context of influence, typically using an if... clause, we labelled
this according to whether the context mentioned the Agent (e.g. “If the active stone is darker than
the inactive stone, it turns the inactive stone darker”), Recipient (e.g. “The active stone causes the
other stones to change into a pentagon shape, unless it is already a pentagon shape, in which case it
makes it darker”), or both. If a response made no localization or context (e.g. “The active stone cause
inactive stones to five sided stone”) then it was labeled as universal.

Figure 8 illustrates the coding results by learning condition. Guess specificity is summarized in
Figure 8A. We fit a multinomial logistic regression model predicting specificity by evidence-balance
and ground truth factors, and found that when taking the specific self-report type as baseline, the
ground truth factor is a significant predictor for the tacit type (β = 1.54, p = 0.008), while evidence-
balance is not (β = 0.78, p = n.s.). Neither of these two factors are significant for the fuzzy
type. Figure 8B summarizes participants’ guesses in terms of localization. No participant localized
their rule in terms of both Agent and Recipient. Unsurprisingly, whenever localization occurred, it
was applied with respect to the object that varied during the learning phase. A logistic regression
predicting universal rule probability by condition showed that both evidence-balance (fixed-recipient,
β = −1.21, z = −2.3, p = 0.02) and ground truth (rule 2, β = 1.17, z = 2.3, p = 0.02) were
associated with more universal rules. There was no evidence for an interaction, z = −0.5, p = n.s..

E.5 Model fits

We extended the grammar used in Experiment 1 to cover a larger space of ordered feature rela-
tionships. Concretely, we introduced +1, -1, >, < at the “bind relation” step to accommodate
potential assertions about the ordering of feature values used in this experiment. As in Experiment
1, LoCaLa was expensive to evaluate so we optimised its parameters using a coarse grid search.
Since there were six data points, during each iteration of the Gibss sampler, when α = 5 this
observation has a half-half chance to create a new causal category or join the rest, in terms of
category size preference, and this chance grows as α increases (Equation 8). Therefore, we cen-
tered the support values for α round 5, with an exponential increase for larger values, resulting in
α ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128, 256}. β takes the same range of values as in fitting
the models in Experiment 1. For γ, values of γ = 1, 0.5 and 0 are of particular theoretical interest,
representing localization based on just the agent, agent and recipient equally, or just the recipient. We
also included γ = 0.25 and γ = 0.75 consistent with a mixed focus biased toward either agent or
recipient.
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