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Abstract

The ability to answer causal questions is crucial in many domains, as causal infer-
ence allows one to understand the impact of interventions. In many applications,
only a single intervention is possible at a given time. However, in certain important
areas, multiple interventions are concurrently applied. Disentangling the effects
of single interventions from jointly applied interventions is a challenging task—
especially as simultaneously applied interventions can interact. This problem is
made harder still by unobserved confounders, which influence both interventions
and outcome. We address this challenge by aiming to learn the effect of a single-
intervention from both observational data and sets of interventions. We prove
that this is not generally possible, but provide identification proofs demonstrating
that it can be achieved in certain classes of additive noise models—even in the
presence of unobserved confounders. Importantly, we show how to incorporate
observed covariates and learn heterogeneous treatment effects conditioned on them
for single-interventions.

1 Introduction

The ability to answer causal questions is crucial in science, medicine, economics, and beyond,
see Gilligan-Lee (2020) for a high-level overview. This is because causal inference allows one to
understand the impact of interventions. In many applications, only a single intervention is possible at
a given time, or interventions are applied one after another in a sequential manner. However, in some
important areas, multiple interventions are concurrently applied. For instance, in medicine, patients
that possess many commodities may have to be simultaneously treated with multiple prescriptions; in
computational advertising, people may be targeted by multiple concurrent campaigns; and in dietetics,
the nutritional content of meals can be considered a joint intervention from which we wish to learn
the effects of individual nutritional components.

Disentangling the effects of single interventions from jointly applied interventions is a challenging
task—especially as simultaneously applied interventions can interact, leading to consequences not
seen when considering single interventions separately. This problem is made harder still by the
possible presence of unobserved confounders, which influence both interventions and outcome. This
paper addresses this challenge, by aiming to learn the effect of a single-intervention from both
observational data and sets of interventions. We prove that this is not generally possible, but provide
identification proofs demonstrating it can be achieved in certain classes of non-linear causal models
with additive Gaussian noise—even in the presence of unobserved confounders. Importantly, we show
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how to incorporate observed covariates, which can be high-dimensional, by learning heterogeneous
treatment effects conditioned on them for single-interventions.

Our main contributions are:

1. A proof that without restrictions on the causal model, single-intervention effects cannot be
identified from observations and joint-interventions. (§3.1,3.2)

2. Proofs that single-interventions can be identified from observations and joint-interventions
when the causal model belongs to certain classes of additive noise models. (§3.2,3.3)

3. An algorithm that learns the parameters of the proposed causal model and disentangles
single interventions from joint interventions. (§4)

4. An empirical validation of our method on synthetic data. (§5)

2 Related Work

Disentangling multiple concurrent interventions: Parbhoo et al. (2021) study the question of
disentangling multiple, simultaneously applied interventions from observational data. They propose
a specially designed neural network for the problem and show good empirical performance on some
datasets. However, they do not address the formal identification problem, nor do they address possible
presence of unobserved confounders. By contrast our work derives the conditions under which
identifiability holds. We moreover propose an algorithm that can disentangle multiple interventions
even in the presence of unobserved confounders—as long as both observational and interventional
data is available. Related work by Parbhoo et al. (2020) investigated the intervention-disentanglement
problem from a reinforcement learning perspective, where each intervention combination constitutes a
different action that a reinforcement learning agent can take. Unlike this approach, our work explicitly
focuses on modelling the interactions between multiple interventions to learn their individual effects.

Closer to our work is Saengkyongam and Silva (2020), who investigate identifiability of joint
effects from observations and single-intervention data. They prove this is not generally possible,
but provide an identification proof for non-linear causal models with additive Gaussian noise. Our
work addresses a complementary question; we want to learn the effect of a single-intervention from
observational data and sets of interventions. Additionally, another difference between our work and
that of Saengkyongam and Silva (2020) is that they do not consider identification of individual-level
causal effects given observed covariates.

In a precursor to the work by Saengkyongam and Silva (2020), Nandy et al. (2017) developed a
method to estimate the effect of joint interventions from observational data when the causal structure
is unknown. This approach assumed linear causal models with Gaussian noise, and only proved
identifiability in this case under a sparsity constraint. However, like Saengkyongam and Silva (2020),
our result does not need the linearity assumption, and no sparsity constraints are required in our
identification proof.

Finally, others including Schwab et al. (2020); Egami and Imai (2018); Lopez and Gutman (2017);
Ghassami et al. (2021) explored how to estimate causal effects of a single categorical-, or continuous-
valued treatment, where different intervention values can produce different outcomes. Unlike our
work, they do not consider multiple concurrent interventions that can interact.

Combining observations and interventions: Bareinboim and Pearl (2016) have investigated non-
parametric identifiability of causal effects using both observational and interventional data, in a
paradigm they call “data fusion.” More general results were studied by Lee et al. (2020), who
provided necessary and sufficient graphical conditions for identifying causal effects from arbitrary
combinations of observations and interventions. Recent work in Correa et al. (2021) explored
identification of counterfactual—as opposed to interventional—distributions from combinations of
observational and interventional data. Finally, Ilse et al. (2021) investigated the most efficient way to
combine observational and interventional data to estimate causal effects. They demonstrated they
could significantly reduce the number of interventional samples required to achieve a certain fit when
adding sufficient observational training samples. However, they only prove their method theoretically
in the linear-Gaussian case. In the non-linear case, they parameterise their model using normalising
flows and demonstrate their method empirically. They only consider estimating single-interventions,
and do not deal with multiple, interacting interventions.
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Additive noise models: While certain causal quantities may not be generally identifiable from
observational and interventional data, by imposing restrictions on the structural functions underlying
causal models, one can obtain semi-parametric identifiability results. One of the most common
restrictions are additive noise models (ANMs), first studied in the context of causal discovery by
Hoyer et al. (2009). ANMs limit the form of the structural equations to be additive with respect to
latent noise variables—but allow nonlinear interactions between causes. Janzing et al. (2009) used
ANMs to devise a method for inferring a latent confounder between two observed variables. This is
otherwise not possible without additional assumptions on the underlying causal model. ANMs have
also been employed by Kilbertus et al. (2020) to investigate the sensitivity of counterfactual notions
of fairness to the presence of unobserved confounding.

Our work proves that in certain classes of ANMs, the effect of a single-intervention can be identified
from observational data and sets of interventions—even in the presence of unobserved confounders.
Moreover, we show how to incorporate observed covariates in these ANMs to learn the heterogeneous
effects of single-interventions conditioned on such covariates.

3 Identifiability of Single-Variable Interventional Effects

In this section, we provide identification proofs for single-variable interventional effects from ob-
servational data and joint interventions, for several model classes. Our theoretical analysis provides
insights into the fundamental limitations of causal inference—and the assumptions that are required
for identification.

Problem Definition We adopt the Structural Causal Model (SCM) framework as introduced by
Pearl (2009). An SCMM is defined by 〈{C,X, Y },U ,f ,PU 〉, where {C,X, Y } are endogenous
variables separated into covariates C, treatments X , and the outcome Y , U are exogenous variables
(possibly confounders), f are structural equations, and PU defines a joint probability distribution
over the exogenous variables.

The SCM M also induces a causal graph—where vertices represent endogenous variables, and
edges represent structural equations. Vertices with outgoing edges to an endogenous variable Xi are
denoted as the parent set of this variable, or PA(Xi). Typically, the observed covariates C causally
influence the treatments as well as the outcome, and are a part of this set. Every endogenous variable
Xi (including Y ) is then a function of its parents in the graph PA(Xi) and a latent noise term Ui,
denoting the influence of factors external to the model:

Xi := fi(PA(Xi), Ui). (1)
In Markovian SCMs, these latent noise terms are all mutually independent. However, in general,
distinct noise terms can be correlated according to some global distribution PU . In this case, such
correlation is due to the presence of unobserved confounders.

An intervention on variable Xi is denoted by do(Xi = xi), and it corresponds to replacing its
structural equation with a constant, or removing all incoming edges in the causal graph. The core
question we wish to answer in this work, is under which conditions the treatment effect of a single
intervention can be disentangled from joint interventions and observational data. That is, given
samples from the data regimes that induce

E[Y |Xi = xi, Xj = xj , C = c], and E[Y |do(Xi = xi, Xj = xj), C = c],

when can we learn conditional average causal effects
E[Y |do(Xi = xi), Xj = xj , C = c], or E[Y |Xi = xi, do(Xj = xj), C = c]?

In what follows, we first show that this is not possible without restrictions on the causal model—a
proof by counterexample. We then go on to prove, again by counterexample, that simply assuming
ANMs without restrictions on the structure of the causal graph—the core assumption made by
Saengkyongam and Silva (2020)—is not enough for this complementary research question. Finally,
we prove identifiability of the treatment effect for ANMs without causal interactions between
treatments. Note that this latter case does not mean treatments are independent: treatments can be
influenced by observed covariates and unobserved confounders, and their interactions on the outcome
are defined by the unrestricted function fY .

3.1 Unidentifiability for general SCMs

3



Table 2: Interventional distributions on X1 under SCMsM andM′ for 3.1.

PM(Y,X2|do(X1)) Y = 0 Y = 1

do(X1 = 0)
X2 = 0 1 0
X2 = 1 0 0

do(X1 = 1)
X2 = 0 1− p 0
X2 = 1 0 p

PM′(Y,X2|do(X1)) Y = 0 Y = 1

do(X1 = 0)
X2 = 0 1− p 0
X2 = 1 p 0

do(X1 = 1)
X2 = 0 1− p 0
X2 = 1 0 p

Table 1: SCMs for 3.1

M M′

X1 = U1 X1 = U1

X2 = X1U2 X2 = U2

Y = X1X2UY Y = X1X2UY

For simplicity, but without loss of generality,
we consider two treatment variables {X1, X2}
and no covariates. We will show that two dif-
ferent SCMsM andM′ can yield identical ob-
servational distributions, as well as joint inter-
ventional distributions. They will also agree on
the single-variable interventional distribution for
treatment X1, but disagree on the single-variable effect of treatment X2. As such, given data from
sets of interventions, this example shows the treatment effect of single-variable interventions is not
generally identifiable. Our SCMs are defined in Table 1, where U1 = U2 = UY ∼ Bernoulli(p). The
observational, joint, and single-variable interventional distributions on X2 are identical underM and
M′; we defer them to the supplemental material. The interventional distribution on X1 differs forM
andM′, as shown in Table 2. This counterexample shows that single-variable interventional effects
are not identifiable for general SCMs, even in simple cases with two treatments.

3.2 Unidentifiability for general ANMs

An Additive Noise Model is an SCM where the influence of the latent noise variables is restricted to
be additive in the structural equations. That is, Eq. 1 is restricted to the form:

Xi := fi(PA(Xi)) + Ui. (2)

Following Saengkyongam and Silva (2020), we additionally assume the noise distribution to be a
zero-centered Gaussian with an arbitrary covariance matrix: PU ∼ N (0,Σ). Table 3 defines two
SCMs that satisfy these assumptions.M andM′ yield identical observational, joint interventional,
and single-interventional distributions on X2. However—they disagree on the causal effect of
intervening on X1. An intuitive underlying reason for this, is that we can identify the expression
E[X2|X1 = x1] = f2(x1) + E[U2|X1 = x1], but have no tools to disentangle the effects coming
from the structural equation, f2(x1), from those stemming from the additive noise, E[U2|X1 = x1].
As a result, E[X2|do(X1 = x1)] = f2(x1) is not identifiable, proving that general ANMs with
unrestricted causal structures are insufficient for disentangling treatment effects. In this example,
and in general SCMs of this structure, joint interventions can be disentangled for the consequence
treatment X2, but not for the causing treatment X1:
Theorem 1 (Identifiability of disentangled conditional average treatment effects in additive noise
models with a causal dependency between treatments).
LetM = 〈{C,X, Y },U ,f ,PU 〉 be an SCM, where

Xi = fi(C) + Ui, Xj = fj(C, Xi) + Uj , Y = fY (C,X) + UY ,

and PU ∼ N (0,Σ). The estimand E[Y |do(Xj), C] is identifiable from the conjunction of two data
regimes: (1) the observational distribution, and (2) the joint interventional distribution on (Xi, Xj).

We prove this by showing that the structural equations are identifiable from the joint interventional
regime—whereas the necessary (co-)variances are identifiable from observational data. A formal
proof is deferred to the supplementary material.

3.3 Identifiability for Symmetric ANMs

The crux of the problem of non-identifiability in Section 3.2 comes from the fact that treatment X1

has a direct causal effect on treatment X2. In many realistic applications, this might never occur.
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Table 3: SCMs for 3.2, where (U1, U2, UY )M ∼ N (0,Σ) and (U1, U2, UY )M′ ∼ N (0,Σ′).

M M′

X1 = U1 X1 = U1

X2 = X1 + U2 X2 = 2X1 + U2

Y = X1X2 + UY Y = X1X2 + UY

where Σ =

[
1 1 1
1 1 1
1 1 1

]
, and Σ′ =

[
1 0 1
0 0 0
1 0 1

]
.

Treatments will decidedly be correlated, but this can be encoded in the SCM via either the observed
covariates or the unobserved confounders. Then still, as we have no restrictions on the functional
form of the structural equations with respect to the treatments (i.e. fY ), treatments can still yield
highly nonlinear interaction effects on the outcome. As such, we now focus on the case where
the SCM is devoid of causal links between treatments, but includes observed covariates as well as
unobserved confounders. In this case, the structural equations take the following form:

Xi = fi(C) + Ui, Y = fY (C,X) + UY . (3)

Figure 1 visualises the structure of the causal graph in this setting, for K treatment variables.

X1 X2
. . . XK

U

Y

C

Figure 1: Causal graph for a symmetric
SCM with observed covariates and unob-
served confounders.

Theorem 2 (Identifiability of disentangled conditional
average treatment effects in additive noise models with
symmetric structure).
LetM = 〈{C,X, Y },U ,f ,PU 〉 be an SCM, where

Xi = fi(C) + Ui, ∀i = 1, . . . ,K,

Y = fY (C,X) + UY ,

C ⊥⊥ U , and PU ∼ N (0,Σ) (following the DAG in
Fig. 1). The estimand E[Y |do(Xi), C] is identifiable
from the conjunction of two data regimes:

1. the observational distribution,

2. any interventional distribution on a set of treat-
ments Xint ⊆X that contains Xi: Xi ∈Xint.

Proof. Our causal estimand is the effect of intervening onXi. For notational convenience, we assume
k = i, i.e. the intervention is on the last treatment. From the observational data regime, we can
trivially obtain the joint P(C, X1, . . . , Xk, Y ). As such, we can condition on the covariates and
remaining treatment variables and then marginalise to obtain E[Y |do(Xk = xk), C = c]. We can
rewrite our causal estimand as follows:

E[Y |C = c,X1 = x1, . . . , Xk−1 = xk−1, do(Xk = xk)]

=fY (c, x1, . . . , xk) + E[UY |C = c,X1 = x1, . . . , Xk−1 = xk−1].
(4)

From the joint interventional data regime, we have access to the following expectation:

E[Y |C = c, do(X1 = x1, . . . , Xk = xk)] = fY (c, x1, . . . , xk). (5)

Subtracting Eq. 5 from Eq. 4 shows that we only need to provide identifiability for the conditional
expectation on the outcome noise, given the remaining treatment variables and the observed covariates:

E[UY |C =c,X1 = x1, . . . , Xk−1 = xk−1] = Σuy
Σ−1ux

ux,

where Σuy
=
[
σY 1 . . . σY (k−1)

]
,

Σux
=




σ2
1 . . . σ1(k−1)
...

. . .
...

σ(k−1)1 . . . σ2
k−1


 ,

and ux = [x1 − f1(c) . . . xk−1 − fk−1(c)]
ᵀ
.

(6)
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Y

X1 X2

U

do(X1 = x1)

do(X2 = x2)C

(a) Only E[Y |C = c, do(X2 =
x2)] is generally identifiable.

X1 X3

UX2

Y

C

(b) Only E[Y |C = c, do(X3 =
x3)] is generally identifiable.

Y

X1 X2

U

do(X1 = x1)

do(X2 = x2)C

(c) All E[Y |C = c, do(Xi =
xi)] are generally identifiable.

Figure 2: Causal Graphs illustrating under which conditions the single-variable causal effect on the
outcome is identifiable from the observational and joint interventional data regimes.

Here, σij denotes the covariance between noise variables Ui and Uj , and σY i denotes the covariance
between the outcome UY and Ui. There are two types of unidentified factors in these expressions:
the structural equations, that is, the fi’s encapsulated in ux from Eq. 6, and the parameters of the
noise distribution, which are encapsulated in Σux

and Σuy
. We tackle these in what follows:

Identifying the structural equations. As a direct result of our model definition, we can obtain
E[Xi|C = c] = fi(c) from the observational data regime. This follows because in the DAG of
Figure 1 C and Ui are independent for all i. As such, the structural equations (and thus ux from
Eq. 6) are identifiable.

Identifying the noise distribution. For any pair of treatment variables, we can obtain E[Xi|C =
c,Xj = xj ] = fi(c) + E[Ui|Xj = xj ]. The latter term in this expression can then be rewritten as
E[Ui|Uj = xj − fj(c)], for fixed values of xj and c. Because we have shown the structural equations
(fi, fj) to be identifiable, we have that E[Ui|Uj ] is identifiable, which gives us the covariance σij .
Hence, the entirety of Σux

is identifiable. The same procedure can be used for every entry of Σuy
,

and the covariances σY i are identifiable as a result.

It follows naturally that E[Y |C = c,X1 = x1, . . . , Xk−1 = xk−1, do(Xk = xk)] is identifiable. As
we have data from the observational regime, any marginalisation of this query is identifiable as well,
which concludes the proof.

In this section, we have studied for several classes of SCMs whether causal effects can be disentangled.
Our results provide insights into the fundamental limits of learning and inference, and help crystallise
which assumptions are necessary and sufficient to make disentanglement of effects from sets of
interventions feasible. Figure 2 visualises and summarises our key results denoting which single-
variable causal effects can be disentangled in ANMs with zero-mean Gaussian noise. In what follows,
we present a learning methodology and validate our theoretical identifiability results with empirical
observations.

4 Estimating SCMs from Observational and Joint Interventional Data

In this section, we introduce our methodology for estimating SCMs and providing estimates for treat-
ment effects under any set of interventions. Estimating an SCM from a combination of observational
and interventional data boils down to (1) estimating the structural equations, and (2) estimating the
noise distribution. We extend the Expectation-Maximisation-style iterative algorithm proposed by
Saengkyongam and Silva (2020) to handle observed covariates, and to disentangle causal effects
instead of combining them. The resulting method is not limited to learning single-variable causal
effects, as the results from Saengkyongam and Silva (2020) allow us to extend these newly learned
single-variable effects to sets of interventions. As a result, our learning method is able to generalise
to sets of interventions that were never observed in the training data, with the only restriction that
every variable that makes up the set was part of some intervention set in the training data.

Say we intervene on a subset of treatments Xint ⊆ X , and Xobs ≡ X \Xint. In general, we can
decompose a causal query with interventions on Xint as follows:

E[Y |C; do(Xint);Xobs] = fY (C;X) + E[UY |Xobs]. (7)
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Algorithm 1 SCM Estimation for Symmetric ANMs

Input: Dataset D
Output: Parameter estimates θ̂, Σ̂

1: Initialise θ̂ and Σ̂
2: while not converged do
3: // Solve for θ with fixed Σ̂
4: Optimise log-likelihood in Eq. 9
5: // Solve for Σ with fixed θ̂
6: Estimate Σ̂ from Û = x− f(x; θ̂)

7: return θ̂, Σ̂

Samples consist of observed values for all endogenous variables. For convenience, we denote a
sample by x. Suppose we have data from d different data regimes, corresponding to d different sets
of interventions (the empty set ∅ corresponds to the observational regime). The full dataset consists
of samples and their corresponding interventions D = {(Xint;x)}.

Estimating the structural equations. We parameterise the structural equations with θ, denoted as
f(·; θ). The Gaussian likelihood with covariance matrix Σ is denoted as PU (·; Σ).

The likelihood for a single endogenous variable xi is defined as L(xi; θ,Σ) = PU (xi −
fi(PA(xi); θ); Σ). The likelihood for a sample x is defined as the sum of the likelihoods for every
endogenous variable that was not intervened on in that sample:

L(x;Xint, θ,Σ) =
∑

xi∈X\Xint

L(xi; θ,Σ). (8)

Naturally, the log-likelihood of the dataset is then:

`(D; θ,Σ) =
∑

(Xint,x)∈D

logL(x;Xint, θ,Σ). (9)

In principle, any iterative optimisation procedure can be used to maximise Eq. 9 when we fix the
covariance Σ. Typically, an appropriate method is chosen with respect to the model parameterisation.

Estimating the noise distribution. Following Saengkyongam and Silva (2020), we note that the
maximum likelihood estimate for the covariance matrix of a multivariate normal can be directly
computed from the sample. This allows for efficient closed-form computation of this step. We
additionally note that the assumption of zero-mean Gaussian noise simplifies the proof and yields
an analytical solution for this step, but this is not a general limitation of the method. Indeed—what
matters is that we can estimate the conditional noise E[UY |Xobs], which can in principle just as well
be estimated via a different model.

Algorithm 1 shows the full iterative procedure that we adopt to estimate the parameters of a symmetric
ANM. At inference time, Eq. 7 allows us to estimate the outcome under any—even potentially
unseen—set of interventions.

5 Empirical Validation and Discussion

In this section, we empirically validate the effectiveness of our method in estimating SCMs from
observational and joint-interventional data, and assess the accuracy of the inferred outcomes under
varying sets of interventions. We adopt a simulation setup, which gives us the freedom to vary
the true underlying SCM and observe performance differences among competing methods. The
structural equation functions fi, fY in Eq. 3 are polynomials with second-order interactions to
illustrate the effectiveness of the learning method even when treatment effects are highly non-linear,
and the optimisation surface is highly non-convex. We use the well-known Adam optimiser in our
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do(X0, X2, X3)

102 103 104
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Sample Size

do(X0, X1, X2, X3)
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√

2
πσ

Figure 3: Mean Absolute Error for estimating the outcome under varying sets of interventions, for
varying sample sizes, comparing the baseline regression approach with our proposed method. We
empirically validate that our estimator is unbiased and consistent, exhibiting optimal predictions even
with modest training sample sizes.

experiments (Kingma and Ba, 2014). As a baseline learning method we adopt a regression model that
estimates the outcome from its direct treatments using pooled data from different regimes. Here, the
presence of unobserved confounders severely hinders the method to provide accurate estimates under
varying sets of interventions, further motivating the need for causal models. The research questions
we wish to answer from empirical results, are the following:

RQ1 Is our method able to accurately estimate the outcome under previously unseen sets of inter-
ventions?

RQ2 Is our method able to accurately estimate the parameters of the structural equations and the
noise distribution?

We let |C| = |X| = 4, yielding θi ∈ R11 ∀fi , and θy ∈ R37 for the parameterisation of fy.
The parameters for the structural equations are randomly sampled from a uniform distribution over
[−2,+2]. The covariance matrix Σ ∈ R5×5 is uniformly sampled from a uniform distribution over
[−1,+1], and then ensured to be positive semi-definite through Ledoit-Wolf shrinkage (Ledoit and
Wolf, 2004). We repeat this process 10 times with varying random seeds and report confidence
intervals over obtained measurements.

We vary the size of the training sample |D| ∈ {2i∀i = 3, . . . , 11}, where the set of intervened treat-
ments Xint is one of {∅; {X0, X1}; {X1, X2}; {X2, X3}; }. As such, no single-variable interventions
and the majority of the possible sets of interventions are never observed. From this data, we estimate
an SCM using the procedure laid out in Algorithm 1.

Then, for every possible (2|X|) set of interventions, we simulate 10 000 samples and estimate the
outcome based on our estimated SCM using Eq. 7. We report the Mean Absolute Error (MAE)
between our estimated outcome and the true outcome. Note that, as the true outcome is Gaussian, the
optimal estimate is the location of that Gaussian, which will have an expected deviation of

√
2
πσ

where σ is the standard deviation on the noise parameter UY .

Estimating outcomes (RQ1). Figure 3 visualises the results from the procedure laid out above,
increasing the size of the training sample over the x-axis and reporting the MAE on the y-axis. Note
that both axes are logarithmically scaled, and the shaded regions indicate 95% confidence intervals.
The plots clearly indicate that our method is able to provide accurate and close to optimal estimates
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Figure 4: Mean Absolute Error for estimating the underlying SCM under varying sets of interventions,
for varying sample sizes, comparing the baseline regression approach with our proposed method. We
empirically validate that our estimator is unbiased and consistent, yielding accurate estimates even at
modest training sample sizes.

for the outcome, under any possible set of interventions. Indeed, the plots labelled observational,
do(X0, X1), do(X1, X2) and do(X2, X3) show the accuracy of our method to estimate the outcome
under interventions that occurred in the training data—but the remaining twelve plots relate to
previously unseen data regimes. While our results allow us to disentangle joint interventions, the
results of Saengkyongam and Silva (2020) allow us to combine interventions. As such, our method
incorporates (and subsumes) theirs, in order to generalise to arbitrary sets of interventions. In contrast,
the regression method that is oblivious to confounders fails to accurately estimate the outcome under
any data regime—even those that are seen in the training data, or those where confounders yield no
influence on the outcome (i.e. all treatments are intervened on). As such, the reported results validate
that the proposed method provides an unbiased and consistent estimator for the disentangled causal
effect, learned from sets of interventions in the presence of unobserved confounders.

Estimating SCMs (RQ2). We visualise the results with respect to the accuracy of the parameter
estimates in Figure 4. These measurements are obtained using the same procedure and runs as
for RQ1. Increasing the size of the training sample over the x-axis, the leftmost plot shows the
accuracy of the estimated parameters for fY . The rightmost plot shows the accuracy of the estimated
covariance matrix for the multivariate normal that defines the noise distribution. As the baseline
regression method is oblivious to the noise distribution, it is not included in the latter plot. Both axes
are logarithmically scaled, and the shaded regions indicate 95% confidence intervals. We observe that
our method is able to efficiently and effectively estimate the underlying causal model—empirically
validating the identifiability results presented in this work.

6 Conclusions and Future Work

In this work, we motivated the need for methods that can disentangle the effects of single interventions
from jointly applied interventions. As multiple interventions are bound to interact in possibly complex
ways, this is a challenging task; even more so in the presence of unobserved confounders. First, we
proved that such disentanglement is not possible in the general setting, even when we restrict the
influence of the unobserved confounders to be additive in nature. By restricting the structure of the
causal graph to be symmetric—void of edges between treatments—we showed that an identifiability
result can be acquired. Additionally, we showed how to incorporate observed covariates into an
existing learning method for joint interventional effects, and have empirically demonstrated how it
can estimate the outcome under arbitrary sets of interventions, even those unseen in the training
sample.

In future work, we wish to tackle the case where the noise distribution is not restricted to a zero-mean
multivariate Gaussian. As we have hinted at in Section 4, this assumption provides a closed-form
expression for the conditional expectation of the outcome noise given the observed treatments—
but universal function approximators could be leveraged to obtain similar guarantees for more
general model classes. Additionally, we wish to further validate our method on real-world data
containing jointly applied interventions, as well as a ground truth for the outcome on single-variable
interventions.
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A Unidentifiability under Unconstrained SCMs

These tables hold the full distributions for the counterexample in Section 3.1, showing that single-
variable interventional effects are unidentifiable from observational and joint interventional data for
unconstrained SCMs.

Table 4: Distributions under both SCMsM andM′.
(a) Observational joint distribution.

P(X1, X2, Y ) Y = 0 Y = 1

X1, X2 = 0, 0 1− p 0
X1, X2 = 0, 1 0 0
X1, X2 = 1, 0 0 0
X1, X2 = 1, 1 0 p

(b) Joint interventional distribution.

P(Y |do(X1, X2)) Y = 0 Y = 1

do(X1 = 0, X2 = 0) 1 0
do(X1 = 0, X2 = 1) 1 0
do(X1 = 1, X2 = 0) 1 0
do(X1 = 1, X2 = 1) 1− p p

(c) Interventional distribution on X2.

P(Y,X1|do(X2)) Y = 0 Y = 1

do(X2 = 0)
X1 = 0 1− p 0
X1 = 1 p 0

do(X2 = 1)
X1 = 0 1− p 0
X1 = 1 0 p

B Identifiability with Causally Dependent Treatments

This section provides a proof for identifiabiltiy of single-variable causal effects when there is a causal
dependency among treatments (Theorem 1). Observational and joint interventional data are not
sufficient in this case to identify causal effects on all treatments – but we can identify the causal effect
of intervening on the consequence treatment instead of the causing treatment.

Proof. Our causal estimand is the effect of intervening on Xj . We can rewrite our causal estimand as
follows:

E[Y |Xi = xi, do(Xj = xj), C = c] = fY (c, xi, xj) + E[UY |C = c,Xi = xi]. (10)

From the joint interventional data regime, we have access to the following expectation:

E[Y |C = c, do(Xi = xi, Xj = xj)] = fY (c, xi, xj). (11)

Subtracting Eq. 11 from Eq. 10 shows that we only need to provide identifiability for the conditional
expectation on the outcome noise, given the observed value for treatment Xi and the observed
covariates C:

E[UY |C = c,Xi = xi] = E[UY |Ui = xi − fi(c)] =
σY i
σii

(xi − fi(c)). (12)

Here, the first step comes from our SCM definition, and the second step comes from the fact that
we assume the noise distribution to be a zero-centered multivariate Gaussian. As such, we need to
identify the function fi, the variance on the noise variable Ui, and the covariance between Ui and
UY . We obtain E[Xi|C = c] = fi(c) directly from the observational data regime. This makes the
noise variable Ui = Xi − fi(C) identifiable. Now, as a result, we can identify its variance σii and
covariance σY i from the observational data regime, which concludes the proof.
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